Matching Items (7)

Filtering by

Clear all filters

152336-Thumbnail Image.png

Frequency response characteristics of respiratory flow-meters

Description

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.

Contributors

Agent

Created

Date Created
2013

154833-Thumbnail Image.png

Basins of attraction in human balance

Description

According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older

According to the CDC in 2010, there were 2.8 million emergency room visits costing $7.9 billion dollars for treatment of nonfatal falling injuries in emergency departments across the country. Falls are a recognized risk factor for unintentional injuries among older adults, accounting for a large proportion of fractures, emergency department visits, and urgent hospitalizations. The objective of this research was to identify and learn more about what factors affect balance using analysis techniques from nonlinear dynamics. Human balance and gait research traditionally uses linear or qualitative tests to assess and describe human motion; however, it is growing more apparent that human motion is neither a simple nor a linear task. In the 1990s Collins, first started applying stochastic processes to analyze human postural control system. Recently, Zakynthinaki et al. modeled human balance using the idea that humans will remain erect when perturbed until some boundary, or physical limit, is passed. This boundary is similar to the notion of basins of attraction in nonlinear dynamics and is referred to as the basin of stability. Human balance data was collected using dual force plates and Vicon marker position data for leans using only ankle movements and leans that were unrestricted. With this dataset, Zakynthinaki’s work was extended by comparing different algorithms used to create the critical curve (basin of stability boundary) that encloses the experimental data points as well as comparing the differences between the two leaning conditions.

Contributors

Agent

Created

Date Created
2016

155981-Thumbnail Image.png

Real-Time Feedback Training to Improve Gait and Posture in Parkinson's Disease

Description

Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in

Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in people with PD do not respond well to pharmaceutical and surgical treatments, novel rehabilitative therapies to alleviate these impairments are necessary. Many studies have confirmed that people with PD can improve their walking patterns when external cues are presented. Only a few studies have provided explicit real-time feedback on performance, but they did not report how well people with PD can follow the cues on a step-by-step basis. In a single-session study using a novel-treadmill based paradigm, our group had previously demonstrated that people with PD could follow step-length and back angle feedback and improve their gait and posture during treadmill walking. This study investigated whether a long-term (6-week, 3 sessions/week) real-time feedback training (RTFT) program can improve overground gait, upright posture, balance, and quality of life. Three subjects (mean age 70 ± 2 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were enrolled and participated in the program. The RTFT sessions involved walking on a treadmill while following visual feedback of step length and posture (one at any given time) displayed on a monitor placed in front of the subject at eye-level. The target step length was set between 110-120% of the step length obtained during a baseline non-feedback walking trial and the target back angle was set at the maximum upright posture exhibited during a quiet standing task. Two subjects were found to significantly improve their posture and overground walking at post-training and these changes were retained six weeks after RTFT (follow-up) and the third subject improved his upright posture and gait rhythmicity. Furthermore, the magnitude of the improvements observed in these subjects was greater than the improvements observed in reports on other neuromotor interventions. These results provide preliminary evidence that real-time feedback training can be used as an effective rehabilitative strategy to improve gait and upright posture in people with PD.

Contributors

Agent

Created

Date Created
2017

161773-Thumbnail Image.png

The Effect of Backward Perturbation on Fall Outcomes in Ankle Foot Orthosis (AFO) and Functional Electrical Stimulator (FES) Users with Chronic Stroke

Description

Between 20%-30% of stroke survivors have foot drop. Foot drop is characterized by inadequate dorsiflexion required to clear the foot of the ground during the swing phase of gait, increasing the risk of stumbles and falls (Pouwels et al. 2009;

Between 20%-30% of stroke survivors have foot drop. Foot drop is characterized by inadequate dorsiflexion required to clear the foot of the ground during the swing phase of gait, increasing the risk of stumbles and falls (Pouwels et al. 2009; Hartholt et al. 2011). External postural perturbations such as trips and slips are associated with high rate of falls in individuals with stroke (Forster et al. 1995). Falls often results in head, hip, and wrist injuries (Hedlund et al 1987; Parkkari et al. 1999). A critical response necessary to recover one’s balance and prevent a fall is the ability to evoke a compensatory step (Maki et al. 2003; Mansfield et al. 2013). This is the step taken to restore one’s balance and prevent a fall. However, this is difficult for stroke survivors with foot drop as normal gait is impaired and this translates to difficulty in evoking a compensatory step. To address both foot drop and poor compensatory stepping response, assistive devices such as the ankle-foot-orthosis (AFO) and functional electrical stimulator (FES) are generally prescribed to stroke survivors (Kluding et al. 2013; S. Whiteside et al. 2015). The use of these assistive devices improves walking speed, foot clearance, cadence, and step length of its users (Bethoux et al. 2014; Abe et al. 2009; Everaert et al. 2013; Alam et al. 2014). However, their impact on fall outcome in individuals with stroke in not well evaluated (Weerdesteyn et al. 2008). A recent study (Masood Nevisipour et al. 2019) where stroke survivors experienced a forward treadmill perturbation, mimicking a trip, reports that the impaired compensatory stepping response in stroke survivors in not due to the use of the assistive devices but to severe ankle impairments which these devices do not fully address. However, falls can also occur because of a slip. Slips constitute 40% of outdoor falls (Luukinen et al. 2000). In this study, results for fall rate and compensatory stepping response when subjects experience backward perturbations, mimicking slips, reveal that these devices do not impair the compensatory stepping response of its users.

Contributors

Agent

Created

Date Created
2021

156545-Thumbnail Image.png

Relationship between Motor Generalization and Motor Transfer

Description

Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much

Adapting to one novel condition of a motor task has been shown to generalize to other naïve conditions (i.e., motor generalization). In contrast, learning one task affects the proficiency of another task that is altogether different (i.e. motor transfer). Much more is known about motor generalization than about motor transfer, despite of decades of behavioral evidence. Moreover, motor generalization is studied as a probe to understanding how movements in any novel situations are affected by previous experiences. Thus, one could assume that mechanisms underlying transfer from trained to untrained tasks may be same as the ones known to be underlying motor generalization. However, the direct relationship between transfer and generalization has not yet been shown, thereby limiting the assumption that transfer and generalization rely on the same mechanisms. The purpose of this study was to test whether there is a relationship between motor generalization and motor transfer. To date, ten healthy young adult subjects were scored on their motor generalization ability and motor transfer ability on various upper extremity tasks. Although our current sample size is too small to clearly identify whether there is a relationship between generalization and transfer, Pearson product-moment correlation results and a priori power analysis suggest that a significant relationship will be observed with an increased sample size by 30%. If so, this would suggest that the mechanisms of transfer may be similar to those of motor generalization.

Contributors

Agent

Created

Date Created
2018

155893-Thumbnail Image.png

Effects of Load and Walking Conditions on Dynamic Stability Using Longitudinal Wearable Data

Description

Fall accident is a significant problem associated with our society both in terms of economic losses and human suffering [1]. In 2016, more than 800,000 people were hospitalized and over 33,000 deaths resulted from falling. Health costs associated with falling

Fall accident is a significant problem associated with our society both in terms of economic losses and human suffering [1]. In 2016, more than 800,000 people were hospitalized and over 33,000 deaths resulted from falling. Health costs associated with falling in 2016 yielded at 33% of total medical expenses in the US- mounting to approximately $31 billion per year. As such, it is imperative to find intervention strategies to mitigate deaths and injuries associated with fall accidents. In order for this goal to be realized, it is necessary to understand the mechanisms associated with fall accidents and more specifically, the movement profiles that may represent the cogent behavior of the locomotor system that may be amendable to rehabilitation and intervention strategies. In this light, this Thesis is focused on better understanding the factors influencing dynamic stability measure (as measured by Lyapunov exponents) during over-ground ambulation utilizing wireless Inertial Measurement Unit (IMU).

Four pilot studies were conducted: the First study was carried out to verify if IMU system was sophisticated enough to determine different load-carrying conditions. Second, to test the effects of walking inclinations, three incline levels on gait dynamic stability were examined. Third, tested whether different sections from the total gait cycle can be stitched together to assess LDS using the laboratory collected data. Finally, the fourth study examines the effect of “stitching” the data on dynamic stability measure from a longitudinally assessed (3-day continuous data collection) data to assess the effects of free-range data on assessment of dynamic stability.

Results indicated that load carrying significantly influenced dynamic stability measure but not for the floor inclination levels – indicating that future use of such measure should further implicate normalization of dynamic stability measures associated with different activities and terrain conditions. Additionally, stitching method was successful in obtaining dynamic stability measure utilizing free-living IMU data.

Contributors

Agent

Created

Date Created
2017

157700-Thumbnail Image.png

Impact of Total Knee Arthroplasty on Dynamic Fall Response

Description

Falls are the leading cause of fatal and non-fatal injuries in the older adult population with more than 27,000 fall related deaths reported every year[1]. Adults suffering from lower extremity arthritis have more than twice the likelihood of experiencing multiple

Falls are the leading cause of fatal and non-fatal injuries in the older adult population with more than 27,000 fall related deaths reported every year[1]. Adults suffering from lower extremity arthritis have more than twice the likelihood of experiencing multiple falls resulting in increased fall-related injuries compared to healthy adults. People with lower extremity end-stage osteoarthritis(KOA), experience a number of fall risk factors such as knee instability, poor mobility, and knee pain/stiffness. At end-stage knee OA, the space between the bones in the joint of the knee is significantly reduced, resulting in bone to bone frictional wearing causing bone deformation. In addition, an impaired stepping response during a postural perturbation is seen in people with OA related knee instability. The most common treatment for end-stage knee osteoarthritis is a surgical procedure called, total knee replacement (TKR). It is known that TKR significantly reduces pain, knee stiffness, and restores musculoskeletal functions such as range of motion. Despite studies concluding that knee OA increases fall-risk, it remains unknown if standard treatments, such as TKR, can effectively decrease fall-risk. Analyzing the compensatory step response during a fall is a significant indicator of whether a fall or a recovery will occur in the event of a postural disturbance and is key to determining fall risk among people. Studies have shown reduced trunk stability and step length, as well as increased trunk velocities, correspond to an impaired compensatory step. This study looks at these populations to determine whether TKR significantly enhances compensatory stepping response by analyzing trunk velocities and flexions among other kinematic/kinetic variable analysis during treadmill induced perturbations and clinical assessments.

Contributors

Agent

Created

Date Created
2019