Matching Items (14)
Filtering by

Clear all filters

152070-Thumbnail Image.png
Description
When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are

When surgical resection becomes necessary to alleviate a patient's epileptiform activity, that patient is monitored by video synchronized with electrocorticography (ECoG) to determine the type and location of seizure focus. This provides a unique opportunity for researchers to gather neurophysiological data with high temporal and spatial resolution; these data are assessed prior to surgical resection to ensure the preservation of the patient's quality of life, e.g. avoid the removal of brain tissue required for speech processing. Currently considered the "gold standard" for the mapping of cortex, electrical cortical stimulation (ECS) involves the systematic activation of pairs of electrodes to localize functionally specific brain regions. This method has distinct limitations, which often includes pain experienced by the patient. Even in the best cases, the technique suffers from subjective assessments on the parts of both patients and physicians, and high inter- and intra-observer variability. Recent advances have been made as researchers have reported the localization of language areas through several signal processing methodologies, all necessitating patient participation in a controlled experiment. The development of a quantification tool to localize speech areas in which a patient is engaged in an unconstrained interpersonal conversation would eliminate the dependence of biased patient and reviewer input, as well as unnecessary discomfort to the patient. Post-hoc ECoG data were gathered from five patients with intractable epilepsy while each was engaged in a conversation with family members or clinicians. After the data were separated into different speech conditions, the power of each was compared to baseline to determine statistically significant activated electrodes. The results of several analytical methods are presented here. The algorithms did not yield language-specific areas exclusively, as broad activation of statistically significant electrodes was apparent across cortical areas. For one patient, 15 adjacent contacts along superior temporal gyrus (STG) and posterior part of the temporal lobe were determined language-significant through a controlled experiment. The task involved a patient lying in bed listening to repeated words, and yielded statistically significant activations that aligned with those of clinical evaluation. The results of this study do not support the hypothesis that unconstrained conversation may be used to localize areas required for receptive and productive speech, yet suggests a simple listening task may be an adequate alternative to direct cortical stimulation.
ContributorsLingo VanGilder, Jennapher (Author) / Helms Tillery, Stephen I (Thesis advisor) / Wahnoun, Remy (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2013
152013-Thumbnail Image.png
Description
Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present

Reaching movements are subject to noise in both the planning and execution phases of movement production. Although the effects of these noise sources in estimating and/or controlling endpoint position have been examined in many studies, the independent effects of limb configuration on endpoint variability have been largely ignored. The present study investigated the effects of arm configuration on the interaction between planning noise and execution noise. Subjects performed reaching movements to three targets located in a frontal plane. At the starting position, subjects matched one of two desired arm configuration 'templates' namely "adducted" and "abducted". These arm configurations were obtained by rotations along the shoulder-hand axis, thereby maintaining endpoint position. Visual feedback of the hand was varied from trial to trial, thereby increasing uncertainty in movement planning and execution. It was hypothesized that 1) pattern of endpoint variability would be dependent on arm configuration and 2) that these differences would be most apparent in conditions without visual feedback. It was found that there were differences in endpoint variability between arm configurations in both visual conditions, but these differences were much larger when visual feedback was withheld. The overall results suggest that patterns of endpoint variability are highly dependent on arm configuration, particularly in the absence of visual feedback. This suggests that in the presence of vision, movement planning in 3D space is performed using coordinates that are largely arm configuration independent (i.e. extrinsic coordinates). In contrast, in the absence of vision, movement planning in 3D space reflects a substantial contribution of intrinsic coordinates.
ContributorsLakshmi Narayanan, Kishor (Author) / Buneo, Christopher (Thesis advisor) / Santello, Marco (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
152719-Thumbnail Image.png
Description
Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21

Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21 young (21-35 years) and 22 elderly (50-75 years) healthy subjects while they performed three different tasks: quiet standing, dynamic weight shifts, and over ground walking. During the quiet standing task, the subjects stood with their eyes open and eyes closed. When performing dynamic weight shifts task, subjects shifted their Center of Pressure (CoP) from the center target to outward targets and vice versa while following real-time feedback of their CoP. For over ground walking tasks, subjects performed Timed Up and Go test, tandem walking, and regular walking at their self-selected speed. Various quantitative balance and gait measures were obtained to evaluate the above respective balance and walking tasks. Total excursion, sway area, and mean frequency of CoP during quiet standing were found to be the most reliable and showed significant increase with age and absence of visual input. During dynamic shifts, elderly subjects exhibited higher initiation time, initiation path length, movement time, movement path length, and inaccuracy indicating deterioration in performance. Furthermore, the elderly walked with a shorter stride length, increased stride variability, with a greater turn and turn-to-sit duration. Significant correlations were also observed between measures derived from the different balance and gait tasks. Thus, it can be concluded that aging deteriorates the postural control system affecting static and dynamic balance and some of the alterations in CoP and gait measures may be considered as protective mechanisms to prevent loss of balance.
ContributorsBalasubramanian, Shruthi (Author) / Krishnamurthi, Narayanan (Thesis advisor) / Abbas, James (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2014
150297-Thumbnail Image.png
Description
Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of gri

Anticipatory planning of digit positions and forces is critical for successful dexterous object manipulation. Anticipatory (feedforward) planning bypasses the inherent delays in reflex responses and sensorimotor integration associated with reactive (feedback) control. It has been suggested that feedforward and feedback strategies can be distinguished based on the profile of grip and load force rates during the period between initial contact with the object and object lift. However, this has not been validated in tasks that do not constrain digit placement. The purposes of this thesis were (1) to validate the hypothesis that force rate profiles are indicative of the control strategy used for object manipulation and (2) to test this hypothesis by comparing manipulation tasks performed with and without digit placement constraints. The first objective comprised two studies. In the first study an additional light or heavy mass was added to the base of the object. In the second study a mass was added, altering the object's center of mass (CM) location. In each experiment digit force rates were calculated between the times of initial digit contact and object lift. Digit force rates were fit to a Gaussian bell curve and the goodness of fit was compared across predictable and unpredictable mass and CM conditions. For both experiments, a predictable object mass and CM elicited bell shaped force rate profiles, indicative of feedforward control. For the second objective, a comparison of performance between subjects who performed the grasp task with either constrained or unconstrained digit contact locations was conducted. When digit location was unconstrained and CM was predictable, force rates were well fit to a bell shaped curve. However, the goodness of fit of the force rate profiles to the bell shaped curve was weaker for the constrained than the unconstrained digit placement condition. These findings seem to indicate that brain can generate an appropriate feedforward control strategy even when digit placement is unconstrained and an infinite combination of digit placement and force solutions exists to lift the object successfully. Future work is needed that investigates the role digit positioning and tactile feedback has on anticipatory control of object manipulation.
ContributorsCooperhouse, Michael A (Author) / Santello, Marco (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2011
Description
Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating

Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating one sense to another, offers a potential avenue to further assist those with cochlear implants, in addition to the promise they hold for those without existing aids. A user study with a vibrotactile device is evaluated to exhibit the effectiveness of this approach in an auditory gender discrimination task. Additionally, preliminary computational work is included that demonstrates advantages and limitations encountered when expanding the complexity of future implementations.
ContributorsButts, Austin McRae (Author) / Helms Tillery, Stephen (Thesis advisor) / Berisha, Visar (Committee member) / Buneo, Christopher (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2015
157362-Thumbnail Image.png
Description
Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving

Vagus nerve stimulation (VNS) has shown benefits beyond its original therapeutic application, though there is a lack of research into these benefits in healthy and athletic populations. To address this gap in the VNS literature, the present study addresses the feasibility and possible efficacy of transcutaneous VNS (tVNS) in improving performance and various biometrics during two athletic tasks: golf tee shots and baseball pitching. Performance, cortical dynamics, anxiety measures, muscle excitation, and heart rate characteristics were assessed before and after stimulation using electroencephalography (EEG), the State-Trait Anxiety Inventory (STAI), and electrocardiography (ECG) during the baseball and golf tasks as well as electromyography (EMG) for muscle excitation in the golf participants. Golfers exhibited increased perceived quality of each repetition (independent from outcome) and an improvement in state and trait anxiety after stimulation. Golfers in the active stimulation group also showed a greater reduction in right upper trapezius muscle excitation when compared to the sham stimulation group. Baseball pitchers exhibited an increase in perceived quality of each repetition (independent from outcome) after active stimulation but not an improvement of state and trait anxiety. No significant effects of stimulation Priming, stimulation Type, or the Priming×Type interaction were seen in heart rate, EEG, or performance in the golf or baseball tasks. The present study supports the feasibility of tVNS in sports and athletic tasks and suggests the need for future research to investigate further into the effects of tVNS on the performance, psychologic, and physiologic attributes of athletes during competition.
ContributorsLindley, Kyle (Author) / Tyler, William J (Thesis advisor) / Wyckoff, Sarah (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
156873-Thumbnail Image.png
Description
Sleep is an essential human function. Modern day society has made it so that sleep is prioritized less and less. Professionals in critical positions such as doctors, nurses, and emergency medical technicians can often have hectic schedules that are unforgiving toward sleep due to the increase in shift work that

Sleep is an essential human function. Modern day society has made it so that sleep is prioritized less and less. Professionals in critical positions such as doctors, nurses, and emergency medical technicians can often have hectic schedules that are unforgiving toward sleep due to the increase in shift work that dominates these fields. Sleep deficits can have detrimental effects on one’s psyche and mood. Depression and anxiety both have high comorbidity rates with insomnia because of sleeping deficits. Transdermal Electrical Nerve Stimulation (TENS) offers a potential solution to improving sleep quality and mood by modulating the ascending reticular activating system (RAS). This system starts in the anterior portion of the head with trigeminal nerve branches and is stimulated using a 500-550 Hz waveform.

In this experiment Positive Affect and Negative Affect Schedule (PANAS) scores are recorded daily to monitor mood differences between pre and post treatment (TENS vs Sham). PANAS scores were found to be insignificant between groups. Pittsburgh Sleep Quality Index (PSQI), and Fitbit were chosen to study perceived sleep, and objective sleep. Both PSQI, and Fitbit found insignificant differences between TENS and Sham. Finally, the Beck Depression and Beck Anxiety Inventories were administered weekly to determine if there are immediate changes to depressive and anxiety symptom, after a week of treatment (TENS vs Sham). A significant difference was found between the pre and post of the TENS treatment group. The TENS group was not found to be significantly different from Sham, potentially the result of a placebo effect. These results were found with n=10 participants in the TENS treatment group and n=6 in the sham group.
ContributorsUdave, Ceasar (Author) / Tyler, William J (Thesis advisor) / Buneo, Christopher (Committee member) / Wyckoff, Sarah (Committee member) / Arizona State University (Publisher)
Created2018
154664-Thumbnail Image.png
Description
Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy’s with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 μm displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.
ContributorsPalaniswamy, Sivakumar (Author) / Muthuswamy, Jitendran (Thesis advisor) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2016
154617-Thumbnail Image.png
Description
Humans constantly rely on a complex interaction of a variety of sensory modalities in order to complete even the simplest of daily tasks. For reaching and grasping to interact with objects, the visual, tactile, and proprioceptive senses provide the majority of the information used. While vision is often relied on

Humans constantly rely on a complex interaction of a variety of sensory modalities in order to complete even the simplest of daily tasks. For reaching and grasping to interact with objects, the visual, tactile, and proprioceptive senses provide the majority of the information used. While vision is often relied on for many tasks, most people are able to accomplish common daily rituals without constant visual attention, instead relying mainly on tactile and proprioceptive cues. However, amputees using prosthetic arms do not have access to these cues, making tasks impossible without vision. Even tasks with vision can be incredibly difficult as prosthesis users are unable to modify grip force using touch, and thus tend to grip objects excessively hard to make sure they don’t slip.

Methods such as vibratory sensory substitution have shown promise for providing prosthesis users with a sense of contact and have proved helpful in completing motor tasks. In this thesis, two experiments were conducted to determine whether vibratory cues could be useful in discriminating between sizes. In the first experiment, subjects were asked to grasp a series of hidden virtual blocks of varying sizes with vibrations on the fingertips as indication of contact and compare the size of consecutive boxes. Vibratory haptic feedback significantly increased the accuracy of size discrimination over objects with only visual indication of contact, though accuracy was not as great as for typical grasping tasks with physical blocks. In the second, subjects were asked to adjust their virtual finger position around a series of virtual boxes with vibratory feedback on the fingertips using either finger movement or EMG. It was found that EMG control allowed for significantly less accuracy in size discrimination, implying that, while proprioceptive feedback alone is not enough to determine size, direct kinesthetic information about finger position is still needed.
ContributorsOlson, Markey (Author) / Helms-Tillery, Stephen (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2016