Matching Items (17)
Filtering by

Clear all filters

152336-Thumbnail Image.png
Description
Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.
ContributorsHu, Jianchen (Author) / Macia, Narciso (Thesis advisor) / Pollat, Scott (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
156522-Thumbnail Image.png
Description
One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels

One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels across time. In recent years, olfactory sensing has emerged as a promising diagnostic tool for its potential for real-time, non-invasive monitoring. This technology has been proven promising in the areas of oncology, diabetes, and neurological disorders. Little work, however, has addressed the use of olfactory sensing with respect to female fertility. In this work, we perform a study on ten healthy female subjects to determine the volatile signature in biological samples across 28 days, correlating to fertility hormones. Volatile organic compounds (VOCs) present in the air above the biological sample, or headspace, were collected by solid phase microextraction (SPME), using a 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated fiber. Samples were analyzed, using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A regression model was used to identify key analytes, corresponding to the fertility hormones estrogen and progesterone. Results indicate shifts in volatile signatures in biological samples across the 28 days, relevant to hormonal changes. Further work includes evaluating metabolic changes in volatile hormone expression as an early indicator of declining fertility, so women may one day be able to monitor their reproductive health in real-time as they age.
ContributorsOng, Stephanie (Author) / Smith, Barbara (Thesis advisor) / Bean, Heather (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
156762-Thumbnail Image.png
Description
Hypoxia is a pathophysiological condition which results from lack of oxygen supply in tumors. The assessment of tumor hypoxia and its response to therapies can provide guidelines for optimization and personalization of therapeutic protocols for better treatment. Previous research has shown the difficulty in measuring hypoxia anatomically due to its

Hypoxia is a pathophysiological condition which results from lack of oxygen supply in tumors. The assessment of tumor hypoxia and its response to therapies can provide guidelines for optimization and personalization of therapeutic protocols for better treatment. Previous research has shown the difficulty in measuring hypoxia anatomically due to its heterogenous nature. This makes the study of hypoxia through various imaging modalities and mapping techniques crucial. The potential of hypoxia targeting T1 contrast agent GdDO3NI in generating hypoxia maps has been studied earlier. In this work, the similarities between hypoxia maps generated by MRI using GdDO3NI and pimonidazole based immunohistochemistry (IHC) in non-small cell lung carcinoma bearing mice have been studied. Six NCI-H1975 tumor-bearing mice were studied. All animal studies were approved by Arizona State University’s Institute of Animal Care and Use Committee (IACUC). Post co-injection of GdDO3NI and pimonidazole, T1 weighted 3D gradient echo MR images were acquired. For ex-vivo analysis of hypoxia, 30 μm thick tumor sections were obtained for each harvested tumor and were stained for pimonidazole and counter-stained with DAPI for nuclear staining. Pimonidazole (PIMO) is clinically used as a “gold standard” hypoxia marker. The key process involved stacking and iterative registration based on quality metric SSIM (Structural Similarity) Index of DAPI stained images of 5 consecutive tumor sections to produce a 3D volume stack of 150 μm thickness. Information from the 3D volume is combined to produce one final slide by averaging. The same registration transform was applied to stack the pimonidazole images which were previously thresholded to highlight hypoxic regions. The registered IHC stack was then co-registered with a single thresholded T1 weighted gradient echo MRI slice of the same location (~156 μm thick) using an elastic B-splines transform. The same transform was applied to achieve the co-registration of pimonidazole and MR percentage enhancement image. Image similarity index after the co-registration was found to be greater than 0.5 for 5 of the animals suggesting good correlation. R2 values were calculated for both hypoxic regions as well as tumor boundaries. All the tumors showed a high boundary correlation value of R2 greater than 0.8. Half of the animals showed high R2 values greater than 0.5 for hypoxic fractions. The RMSE values for the co-registration of all the animals were found to be low further suggesting better correspondence and validating the MR based hypoxia imaging.
ContributorsSahu, Sulagna (Author) / Kodibagkar, Vikram D. (Thesis advisor) / Sadleir, Rosalind (Committee member) / Smith, Barbara (Committee member) / Arizona State University (Publisher)
Created2018
156613-Thumbnail Image.png
Description
This work describes efforts made toward the development of a compact, quantitative fluorescence-based multiplexed detection platform for point-of-care diagnostics. This includes the development of a microfluidic delivery and actuation system for multistep detection assays. Early detection of infectious diseases requires high sensitivity dependent on the precise actuation of fluids.

Methods

This work describes efforts made toward the development of a compact, quantitative fluorescence-based multiplexed detection platform for point-of-care diagnostics. This includes the development of a microfluidic delivery and actuation system for multistep detection assays. Early detection of infectious diseases requires high sensitivity dependent on the precise actuation of fluids.

Methods of fluid actuation were explored to allow delayed delivery of fluidic reagents in multistep detection lateral flow assays (LFAs). Certain hydrophobic materials such as wax were successfully implemented in the LFA with the use of precision dispensed valves. Sublimating materials such as naphthalene were also characterized along with the implementation of a heating system for precision printing of the valves.

Various techniques of blood fractionation were also investigated and this work demonstrates successful blood fractionation in an LFA. The fluid flow of reagents was also characterized and validated with the use of mathematical models and multiphysics modeling software. Lastly intuitive, user-friendly mobile and desktop applications were developed to interface the underlying Arduino software. The work advances the development of a system which successfully integrates all components of fluid separation and delivery along with highly sensitive detection and a user-friendly interface; the system will ultimately provide clinically significant diagnostics in a of point-of-care device.
ContributorsArafa, Hany M (Author) / Blain Christen, Jennifer M (Thesis advisor) / Goryll, Michael (Committee member) / Smith, Barbara (Committee member) / Arizona State University (Publisher)
Created2018
156803-Thumbnail Image.png
Description
Severe cases of congenital heart defect (CHD) require surgeries to fix the structural problem, in which artificial grafts are often used. Although outcome of surgeries has improved over the past decades, there remains to be patients who require re-operations due to graft-related complications and the growth of patients which results

Severe cases of congenital heart defect (CHD) require surgeries to fix the structural problem, in which artificial grafts are often used. Although outcome of surgeries has improved over the past decades, there remains to be patients who require re-operations due to graft-related complications and the growth of patients which results in a mismatch in size between the patient’s anatomy and the implanted graft. A graft in which cells of the patient could infiltrate, facilitating transformation of the graft to a native-like tissue, and allow the graft to grow with the patient heart would be ideal. Cardiac tissue engineering (CTE) technologies, including extracellular matrix (ECM)-based hydrogels has emerged as a promising approach for the repair of cardiac damage. However, most of the previous studies have mainly focused on treatments for ischemic heart disease and related heart failure in adults, therefore the potential of CTE for CHD treatment is underexplored. In this study, a hybrid hydrogel was developed by combining the ECM derived from cardiac tissue of pediatric CHD patients and gelatin methacrylate (GelMA). In addition, the influence of incorporating gold nanorods (GNRs) within the hybrid hydrogels was studied. The functionalities of the ECM-GelMA-GNR hydrogels as a CTE scaffold were assessed by culturing neonatal rat cardiomyocytes on the hydrogel. After 8 days of cell culture, highly organized sarcomeric alpha-actinin structures and connexin 43 expression were evident in ECM- and GNR-incorporated hydrogels compared to pristine GelMA hydrogel, indicating cell maturation and formation of cardiac tissue. The findings of this study indicate the promising potential of ECM-GelMA-GNR hybrid hydrogels as a CTE approach for CHD treatment.

As another approach to improve CHD treatment, this study sought the possibility of performing a proteomic analysis on cardiac ECM of pediatric CHD patient tissue. As the ECM play important roles in regulating cell signaling, there is an increasing interest in studying the ECM proteome and the influences caused by diseases. Proteomics on ECM is challenging due to the insoluble nature of ECM proteins which makes protein extraction and digestion difficult. In this study, as a first step to perform proteomics, optimization on sample preparation procedure was attempted.
ContributorsSugamura, Yuka (Author) / Nikkhah, Mehdi (Thesis advisor) / Smith, Barbara (Committee member) / Willis, Brigham (Committee member) / Arizona State University (Publisher)
Created2018
154728-Thumbnail Image.png
Description
Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various

Several debilitating neurological disorders, such as Alzheimer's disease, stroke, and spinal cord injury, are characterized by the damage or loss of neuronal cell types in the central nervous system (CNS). Human neural progenitor cells (hNPCs) derived from human pluripotent stem cells (hPSCs) can proliferate extensively and differentiate into the various neuronal subtypes and supporting cells that comprise the CNS. As such, hNPCs have tremendous potential for disease modeling, drug screening, and regenerative medicine applications. However, the use hNPCs for the study and treatment of neurological diseases requires the development of defined, robust, and scalable methods for their expansion and neuronal differentiation. To that end a rational design process was used to develop a vitronectin-derived peptide (VDP)-based substrate to support the growth and neuronal differentiation of hNPCs in conventional two-dimensional (2-D) culture and large-scale microcarrier (MC)-based suspension culture. Compared to hNPCs cultured on ECMP-based substrates, hNPCs grown on VDP-coated surfaces displayed similar morphologies, growth rates, and high expression levels of hNPC multipotency markers. Furthermore, VDP surfaces supported the directed differentiation of hNPCs to neurons at similar levels to cells differentiated on ECMP substrates. Here it has been demonstrated that VDP is a robust growth and differentiation matrix, as demonstrated by its ability to support the expansions and neuronal differentiation of hNPCs derived from three hESC (H9, HUES9, and HSF4) and one hiPSC (RiPSC) cell lines. Finally, it has been shown that VDP allows for the expansion or neuronal differentiation of hNPCs to quantities (>1010) necessary for drug screening or regenerative medicine purposes. In the future, the use of VDP as a defined culture substrate will significantly advance the clinical application of hNPCs and their derivatives as it will enable the large-scale expansion and neuronal differentiation of hNPCs in quantities necessary for disease modeling, drug screening, and regenerative medicine applications.
ContributorsVarun, Divya (Author) / Brafman, David (Thesis advisor) / Nikkhah, Mehdi (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2016
154562-Thumbnail Image.png
Description
Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still

Synthetic biology is a novel method that reengineers functional parts of natural genes of interest to build new biomolecular devices able to express as designed. There is increasing interest in synthetic biology due to wide potential applications in various fields such as clinics and fuel production. However, there are still many challenges in synthetic biology. For example, many natural biological processes are poorly understood, and these could be more thoroughly studied through model synthetic gene networks. Additionally, since synthetic biology applications may have numerous design constraints, more inducer systems should be developed to satisfy different requirements for genetic design.

This thesis covers two topics. First, I attempt to generate stochastic resonance (SR) in a biological system. Synthetic bistable systems were chosen because the inducer range in which they exhibit bistability can satisfy one of the three requirements of SR: a weak periodic force is unable to make the transition between states happen. I synthesized several different bistable systems, including toggle switches and self-activators, to select systems matching another requirement: the system has a clear threshold between the two energy states. Their bistability was verified and characterized. At the same time, I attempted to figure out the third requirement for SR – an effective noise serving as the stochastic force – through one of the most widespread toggles, the mutual inhibition toggle, in both yeast and E. coli. A mathematic model for SR was written and adjusted.

Secondly, I began work on designing a new genetic system capable of responding to pulsed magnetic fields. The operators responding to pulsed magnetic stimuli in the rpoH promoter were extracted and reorganized. Different versions of the rpoH promoter were generated and tested, and their varying responsiveness to magnetic fields was recorded. In order to improve efficiency and produce better operators, a directed evolution method was applied with the help of a CRISPR-dCas9 nicking system. The best performing promoters thus far show a five-fold difference in gene expression between trials with and without the magnetic field.
ContributorsHu, Hao (Author) / Wang, Xiao (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2016
154575-Thumbnail Image.png
Description
The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells

The pathophysiology of neurodegenerative diseases, such as Alzheimer’s disease (AD), remain difficult to ascertain in part because animal models fail to fully recapitulate the complex pathophysiology of these diseases. In vitro models of neurodegenerative diseases generated with patient derived human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) could provide new insight into disease mechanisms. Although protocols to differentiate hiPSCs and hESCs to neurons have been established, standard practice relies on two dimensional (2D) cell culture systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment.

I have developed protocols to generate 3D cultures of neurons from hiPSCs and hESCs, to provide more accurate models of AD. In the first protocol, hiPSC-derived neural progenitor cells (hNPCs) are plated in a suspension of Matrigel™ prior to terminal differentiation of neurons. In the second protocol, hiPSCs are forced into aggregates called embryoid bodies (EBs) in suspension culture and subsequently directed to the neural lineage through dual SMAD inhibition. Culture conditions are then changed to expand putative hNPC populations and finally differentiated to neuronal spheroids through activation of the tyrosine kinase pathway. The gene expression profiles of the 3D hiPSC-derived neural cultures were compared to fetal brain RNA. Our analysis has revealed that 3D neuronal cultures express high levels of mature pan-neuronal markers (e.g. MAP2, β3T) and neural transmitter subtype specific markers. The 3D neuronal spheroids also showed signs of neural patterning, similar to that observed during embryonic development. These 3D culture systems should provide a platform to probe disease mechanisms of AD and enable to generation of more advanced therapeutics.
ContributorsPetty, Francis (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Arizona State University (Publisher)
Created2016
155686-Thumbnail Image.png
Description
The pathophysiology of Alzheimer’s disease (AD) remains difficult to precisely ascertain in part because animal models fail to fully recapitulate many aspects of the disease and postmortem studies do not allow for the study of the pathophysiology. In vitro models of AD generated with patient derived human induced pluripotent stem

The pathophysiology of Alzheimer’s disease (AD) remains difficult to precisely ascertain in part because animal models fail to fully recapitulate many aspects of the disease and postmortem studies do not allow for the study of the pathophysiology. In vitro models of AD generated with patient derived human induced pluripotent stem cells (hiPSCs) could provide new insight into disease mechanisms. Although many protocols exist to differentiate hiPSCs to neurons, standard practice relies on two-dimensional (2-D) systems, which do not accurately mimic the complexity and architecture of the in vivo brain microenvironment. This research aims to create three-dimensional (3-D) models of AD using hiPSCs, which would enhance the understanding of AD pathophysiology thereby, enabling the generation of effective therapeutics.
ContributorsLundeen, Rachel (Author) / Brafman, David (Thesis advisor) / Kiani, Samira (Committee member) / Ebrahimkhani, Mohammad (Committee member) / Arizona State University (Publisher)
Created2017
155427-Thumbnail Image.png
Description
An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the

An in vitro model of Alzheimer’s disease (AD) is required to study the poorly understood molecular mechanisms involved in the familial and sporadic forms of the disease. Animal models have previously proven to be useful in studying familial Alzheimer’s disease (AD) by the introduction of AD related mutations in the animal genome and by the overexpression of AD related proteins. The genetics of sporadic Alzheimer’s is however too complex to model in an animal model. More recently, AD human induced pluripotent stem cells (hiPSCs) have been used to study the disease in a dish. However, AD hiPSC derived neurons do not faithfully reflect all the molecular characteristics and phenotypes observed in the aged cells with neurodegenerative disease. The truncated form of nuclear protein Lamin-A, progerin, has been implicated in premature aging and is found in increasing concentrations as normal cells age. We hypothesized that by overexpressing progerin, we can cause cells to ‘age’ and display the neurodegenerative effects observed with aging in both diseased and normal cells. To answer this hypothesis, we first generated a retrovirus that allows for the overexpression of progerin in AD and non-demented control (NDC) hiPSC derived neural progenitor cells(NPCs). Subsequently, we generated a pure population of hNPCs that overexpress progerin and wild type lamin. Finally, we analyzed the presence of various age related phenotypes such as abnormal nuclear structure and the loss of nuclear lamina associated proteins to characterize ‘aging’ in these cells.
ContributorsRaman, Sreedevi (Author) / Brafman, David (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2017