Matching Items (18)

Filtering by

Clear all filters

152241-Thumbnail Image.png

The effects of deep brain stimulation amplitude on motor performance in Parkinson's disease

Description

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response characteristics, inter-subject variability, consistency of effect across outcome measures, and day-to-day variability. Eight subjects with PD and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitude conditions: approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Overall symptom severity and performance on a battery of motor tasks - gait, postural control, single-joint flexion-extension, postural tremor, and tapping - were assessed at each condition using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and quantitative measures. Data were analyzed to determine whether subjects demonstrated a threshold response (one decrement in stimulation resulted in ≥ 70% of the maximum change) or a graded response to reduced stimulation. Day-to-day variability was assessed using the CDS data from the three testing sessions. Although the cohort as a whole demonstrated a graded response on several measures, there was high variability across subjects, with subsets exhibiting graded, threshold, or minimal responses. Some subjects experienced greater variability in their CDS performance across the three days than the change induced by reducing stimulation. For several tasks, a subset of subjects exhibited improved performance at one or more of the reduced conditions. Reducing stimulation did not affect all subjects equally, nor did it uniformly affect each subject's performance across tasks. These results indicate that altered recruitment of neural structures can differentially affect motor capabilities and demonstrate the need for clinical consideration of the effects on multiple symptoms across several days when selecting DBS parameters.

Contributors

Agent

Created

Date Created
2013

152336-Thumbnail Image.png

Frequency response characteristics of respiratory flow-meters

Description

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where

Flow measurement has always been one of the most critical processes in many industrial and clinical applications. The dynamic behavior of flow helps to define the state of a process. An industrial example would be that in an aircraft, where the rate of airflow passing the aircraft is used to determine the speed of the plane. A clinical example would be that the flow of a patient's breath which could help determine the state of the patient's lungs. This project is focused on the flow-meter that are used for airflow measurement in human lungs. In order to do these measurements, resistive-type flow-meters are commonly used in respiratory measurement systems. This method consists of passing the respiratory flow through a fluid resistive component, while measuring the resulting pressure drop, which is linearly related to volumetric flow rate. These types of flow-meters typically have a low frequency response but are adequate for most applications, including spirometry and respiration monitoring. In the case of lung parameter estimation methods, such as the Quick Obstruction Method, it becomes important to have a higher frequency response in the flow-meter so that the high frequency components in the flow are measurable. The following three types of flow-meters were: a. Capillary type b. Screen Pneumotach type c. Square Edge orifice type To measure the frequency response, a sinusoidal flow is generated with a small speaker and passed through the flow-meter that is connected to a large, rigid container. True flow is proportional to the derivative of the pressure inside the container. True flow is then compared with the measured flow, which is proportional to the pressure drop across the flow-meter. In order to do the characterization, two LabVIEW data acquisition programs have been developed, one for transducer calibration, and another one that records flow and pressure data for frequency response testing of the flow-meter. In addition, a model that explains the behavior exhibited by the flow-meter has been proposed and simulated. This model contains a fluid resistor and inductor in series. The final step in this project was to approximate the frequency response data to the developed model expressed as a transfer function.

Contributors

Agent

Created

Date Created
2013

151099-Thumbnail Image.png

Experimental and computational assessment of locomotor coordination and complexity following incomplete spinal cord injury in the rat

Description

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study

Spinal cord injury (SCI) disrupts the communication between supraspinal circuits and spinal circuits distal to the injury. This disruption causes changes in the motor abilities of the affected individual, but it can also be used as an opportunity to study motor control in the absence or limited presence of control from the brain. In the case of incomplete paraplegia, locomotion is impaired and often results in increased incidence of foot drag and decreased postural stability after injury. The overall goal of this work is to understand how changes in kinematics of movement and neural control of muscles effect locomotor coordination following SCI. Toward this end, we examined musculoskeletal parameters and kinematics of gait in rats with and without incomplete SCI (iSCI) and used an empirically developed computational model to test related hypotheses. The first study tested the hypothesis that iSCI causes a decrease in locomotor and joint angle movement complexity. A rat model was used to measure musculoskeletal properties and gait kinematics following mild iSCI. The data indicated joint-specific changes in kinematics in the absence of measurable muscle atrophy, particularly at the ankle as a result of the injury. Kinematic changes manifested as a decrease in complexity of ankle motion as indicated by measures of permutation entropy. In the second study, a new 2-dimensional computational model of the rat ankle combining forward and inverse dynamics was developed using the previously collected data. This model was used to test the hypothesis that altered coordination of flexor and extensor muscles (specifically alteration in burst shape and timing) acting at the ankle joint could be responsible for increases in incidence of foot drag following injury. Simulation results suggest a time course for changes in neural control following injury that begins with foot drag and decreased delay between antagonistic muscle activations. Following this, beneficial adaptations in muscle activation profile and ankle kinematics counteract the decreased delay to allow foot swing. In both studies, small changes in neural control caused large changes in behavior, particularly at the ankle. Future work will further examine the role of neural control of hindlimb in rat locomotion following iSCI.

Contributors

Agent

Created

Date Created
2012

152400-Thumbnail Image.png

Towards adaptive micro-robotic neural interfaces: autonomous navigation of microelectrodes in the brain for optimal neural recording

Description

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously

Advances in implantable MEMS technology has made possible adaptive micro-robotic implants that can track and record from single neurons in the brain. Development of autonomous neural interfaces opens up exciting possibilities of micro-robots performing standard electrophysiological techniques that would previously take researchers several hundred hours to train and achieve the desired skill level. It would result in more reliable and adaptive neural interfaces that could record optimal neural activity 24/7 with high fidelity signals, high yield and increased throughput. The main contribution here is validating adaptive strategies to overcome challenges in autonomous navigation of microelectrodes inside the brain. The following issues pose significant challenges as brain tissue is both functionally and structurally dynamic: a) time varying mechanical properties of the brain tissue-microelectrode interface due to the hyperelastic, viscoelastic nature of brain tissue b) non-stationarities in the neural signal caused by mechanical and physiological events in the interface and c) the lack of visual feedback of microelectrode position in brain tissue. A closed loop control algorithm is proposed here for autonomous navigation of microelectrodes in brain tissue while optimizing the signal-to-noise ratio of multi-unit neural recordings. The algorithm incorporates a quantitative understanding of constitutive mechanical properties of soft viscoelastic tissue like the brain and is guided by models that predict stresses developed in brain tissue during movement of the microelectrode. An optimal movement strategy is developed that achieves precise positioning of microelectrodes in the brain by minimizing the stresses developed in the surrounding tissue during navigation and maximizing the speed of movement. Results of testing the closed-loop control paradigm in short-term rodent experiments validated that it was possible to achieve a consistently high quality SNR throughout the duration of the experiment. At the systems level, new generation of MEMS actuators for movable microelectrode array are characterized and the MEMS device operation parameters are optimized for improved performance and reliability. Further, recommendations for packaging to minimize the form factor of the implant; design of device mounting and implantation techniques of MEMS microelectrode array to enhance the longevity of the implant are also included in a top-down approach to achieve a reliable brain interface.

Contributors

Agent

Created

Date Created
2013

153191-Thumbnail Image.png

Real-time feedback to improve posture and gait in Parkinson's disease: a feasibility study

Description

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that

Although tremor, rigidity, and bradykinesia are cardinal symptoms of Parkinson's disease (PD), impairments of gait and balance significantly affect quality of life, especially as the disease progresses, and do not respond well to anti-parkinsonism medications. Many studies have shown that people with PD can walk better when appropriate cues are presented but, to the best of our knowledge, the effects of real-time feedback of step length and uprightness of posture on gait and posture have not been specifically investigated. If it can be demonstrated that real-time feedback can improve posture and gait, the resultant knowledge could be used to design effective rehabilitation strategies to improve quality of life in this population.

In this feasibility study, we have developed a treadmill-based experimental paradigm to provide feedback of step length and upright posture in real-time. Ten subjects (mean age 65.9 ± 7.6 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were evaluated in their ability to successfully utilize real-time feedback presented during quiet standing and treadmill walking tasks during a single data collection session in their medication-on state. During quiet standing tasks in which back angle feedback was provided, subjects were asked to utilize the feedback to maintain upright posture. During treadmill walking tasks, subjects walked at their self-selected speed for five minutes without feedback, with feedback of back angle, or with feedback of step length. During walking tasks with back angle feedback, subjects were asked to utilize the feedback to maintain upright posture. During walking tasks with step length feedback, subjects were asked to utilize the feedback to walk with increased step length. During quiet standing tasks, measurements of back angle were obtained; during walking tasks, measurements of back angle, step length, and step time were obtained.

Subjects stood and walked with significantly increased upright posture during the tasks with real-time back angle feedback compared to tasks without feedback. Similarly, subjects walked with significantly increased step length during tasks with real-time step length feedback compared to tasks without feedback. These results demonstrate that people with PD can utilize real-time feedback to improve upright posture and gait.

Contributors

Agent

Created

Date Created
2014

152719-Thumbnail Image.png

Age related changes in balance and gait

Description

Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static

Gait and balance disorders are the second leading cause of falls in the elderly. Investigating the changes in static and dynamic balance due to aging may provide a better understanding of the effects of aging on postural control system. Static and dynamic balance were evaluated in a total of 21 young (21-35 years) and 22 elderly (50-75 years) healthy subjects while they performed three different tasks: quiet standing, dynamic weight shifts, and over ground walking. During the quiet standing task, the subjects stood with their eyes open and eyes closed. When performing dynamic weight shifts task, subjects shifted their Center of Pressure (CoP) from the center target to outward targets and vice versa while following real-time feedback of their CoP. For over ground walking tasks, subjects performed Timed Up and Go test, tandem walking, and regular walking at their self-selected speed. Various quantitative balance and gait measures were obtained to evaluate the above respective balance and walking tasks. Total excursion, sway area, and mean frequency of CoP during quiet standing were found to be the most reliable and showed significant increase with age and absence of visual input. During dynamic shifts, elderly subjects exhibited higher initiation time, initiation path length, movement time, movement path length, and inaccuracy indicating deterioration in performance. Furthermore, the elderly walked with a shorter stride length, increased stride variability, with a greater turn and turn-to-sit duration. Significant correlations were also observed between measures derived from the different balance and gait tasks. Thus, it can be concluded that aging deteriorates the postural control system affecting static and dynamic balance and some of the alterations in CoP and gait measures may be considered as protective mechanisms to prevent loss of balance.

Contributors

Agent

Created

Date Created
2014

154664-Thumbnail Image.png

Interconnects and packaging to enable autonomous movable MEMS microelectrodes to record and stimulate neurons in deep brain structures

Description

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy’s with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 μm displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.

Contributors

Agent

Created

Date Created
2016

161865-Thumbnail Image.png

Modifying Motor Skill Learning via Neuromodulation of Frontoparietal Networks

Description

Motor skill learning is important to rehabilitation, sports, and many occupations. When attempting to learn or adapt a motor skill, some individuals learn slower or less compared to others despite the same amount of motor practice. This dissertation aims to

Motor skill learning is important to rehabilitation, sports, and many occupations. When attempting to learn or adapt a motor skill, some individuals learn slower or less compared to others despite the same amount of motor practice. This dissertation aims to understand the factors that contributed to such variability in motor learning, and thereby identify viable methods to enhance motor learning. Behavioral evidence from our lab showed that visuospatial ability is positively related to the extent of motor learning. Neuroimaging studies suggest that motor learning and visuospatial processes share common frontoparietal neural structures, and that this visuospatial-motor relationship may be more pronounced in the right hemisphere compared to the left. Thus, the overall objective of this dissertation is to determine if aspects of motor learning (such as the rate and extent of skill acquisition) may be modifiable through neuromodulation of the right frontoparietal network. In Aim 1, anodal transcranial direct current stimulation (tDCS) was used to test whether modulating the right parietal area affects visuospatial ability and motor skill acquisition. A randomized, three-arm design was used, which added a no-tDCS control group to the double-blinded sham-control protocol to address placebo effects. No tDCS treatment effect was observed, likely due to low statistical power to detect any treatment effects as the study is still ongoing. However, the current results revealed a unique finding that the placebo effect of tDCS was stronger than its treatment effect on motor learning, with implications that tDCS and motor studies should measure and control for placebo effects.
In Aim 2, right frontoparietal connectivity during resting-state EEG was estimated via alpha band imaginary coherence to test whether it correlated with visuospatial performance and motor skill acquisition. As a preliminary step towards leveraging the frontoparietal network for EEG-neurofeedback applications, this work found that alpha imaginary coherence was positively correlated with visuospatial function, but not with motor skill acquisition during a limited dose of motor practice (only 5 trials). This work establishes a premise for developing frontoparietal alpha IC-based neurofeedback for cognitive training in rehabilitation, while warranting future studies to test the relationship between alpha IC and motor learning with a more extensive motor training regimen.

Contributors

Agent

Created

Date Created
2021

155964-Thumbnail Image.png

Techniques to Assess Balance and Mobility in Lower-Limb Prosthesis Users

Description

Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or

Lower-limb prosthesis users have commonly-recognized deficits in gait and posture control. However, existing methods in balance and mobility analysis fail to provide sufficient sensitivity to detect changes in prosthesis users' postural control and mobility in response to clinical intervention or experimental manipulations and often fail to detect differences between prosthesis users and non-amputee control subjects. This lack of sensitivity limits the ability of clinicians to make informed clinical decisions and presents challenges with insurance reimbursement for comprehensive clinical care and advanced prosthetic devices. These issues have directly impacted clinical care by restricting device options, increasing financial burden on clinics, and limiting support for research and development. This work aims to establish experimental methods and outcome measures that are more sensitive than traditional methods to balance and mobility changes in prosthesis users. Methods and analysis techniques were developed to probe aspects of balance and mobility control that may be specifically impacted by use of a prosthesis and present challenges similar to those experienced in daily life that could improve the detection of balance and mobility changes. Using the framework of cognitive resource allocation and dual-tasking, this work identified unique characteristics of prosthesis users’ postural control and developed sensitive measures of gait variability. The results also provide broader insight into dual-task analysis and the motor-cognitive response to demanding conditions. Specifically, this work identified altered motor behavior in prosthesis users and high cognitive demand of using a prosthesis. The residual standard deviation method was developed and demonstrated to be more effective than traditional gait variability measures at detecting the impact of dual-tasking. Additionally, spectral analysis of the center of pressure while standing identified altered somatosensory control in prosthesis users. These findings provide a new understanding of prosthetic use and new, highly sensitive techniques to assess balance and mobility in prosthesis users.

Contributors

Agent

Created

Date Created
2017

155981-Thumbnail Image.png

Real-Time Feedback Training to Improve Gait and Posture in Parkinson's Disease

Description

Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in

Progressive gait disorder in Parkinson's disease (PD) is usually exhibited as reduced step/stride length and gait speed. People with PD also exhibit stooped posture, which can contribute to reduced step length and arm swing. Since gait and posture deficits in people with PD do not respond well to pharmaceutical and surgical treatments, novel rehabilitative therapies to alleviate these impairments are necessary. Many studies have confirmed that people with PD can improve their walking patterns when external cues are presented. Only a few studies have provided explicit real-time feedback on performance, but they did not report how well people with PD can follow the cues on a step-by-step basis. In a single-session study using a novel-treadmill based paradigm, our group had previously demonstrated that people with PD could follow step-length and back angle feedback and improve their gait and posture during treadmill walking. This study investigated whether a long-term (6-week, 3 sessions/week) real-time feedback training (RTFT) program can improve overground gait, upright posture, balance, and quality of life. Three subjects (mean age 70 ± 2 years) with mild to moderate PD (Hoehn and Yahr stage III or below) were enrolled and participated in the program. The RTFT sessions involved walking on a treadmill while following visual feedback of step length and posture (one at any given time) displayed on a monitor placed in front of the subject at eye-level. The target step length was set between 110-120% of the step length obtained during a baseline non-feedback walking trial and the target back angle was set at the maximum upright posture exhibited during a quiet standing task. Two subjects were found to significantly improve their posture and overground walking at post-training and these changes were retained six weeks after RTFT (follow-up) and the third subject improved his upright posture and gait rhythmicity. Furthermore, the magnitude of the improvements observed in these subjects was greater than the improvements observed in reports on other neuromotor interventions. These results provide preliminary evidence that real-time feedback training can be used as an effective rehabilitative strategy to improve gait and upright posture in people with PD.

Contributors

Agent

Created

Date Created
2017