Matching Items (16)
Filtering by

Clear all filters

151671-Thumbnail Image.png
Description
Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does

Concussion, a subset of mild traumatic brain injury (mTBI), has recently been brought to the forefront of the media due to a large lawsuit filed against the National Football League. Concussion resulting from injury varies in severity, duration, and type, based on many characteristics about the individual that research does not presently understand. Chronic fatigue, poor working memory, impaired self-awareness, and lack of attention to task are symptoms commonly present post-concussion. Currently, there is not a standard method of assessing concussion, nor is there a way to track an individual's recovery, resulting in misguided treatment for better prognosis. The aim of the following study was to determine patient specific higher-order cognitive processing deficits for clinical diagnosis and prognosis of concussion. Six individuals (N=6) were seen during the acute phase of concussion, two of whom were seen subsequently when their symptoms were deemed clinically resolved. Subjective information was collected from both the patient and from neurology testing. Each individual completed a task, in which they were presented with degraded speech, taxing their higher-order cognitive processing. Patient specific behavioral patterns are noted, creating a unique paradigm for mapping subjective and objective data for each patient's strategy to compensate for deficits and understand speech in a difficult listening situation. Keywords: concussion, cognitive processing
ContributorsBerg, Dena (Author) / Liss, Julie M (Committee member) / Azuma, Tamiko (Committee member) / Caviness, John (Committee member) / Arizona State University (Publisher)
Created2013
152594-Thumbnail Image.png
Description
The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits

The recent spotlight on concussion has illuminated deficits in the current standard of care with regard to addressing acute and persistent cognitive signs and symptoms of mild brain injury. This stems, in part, from the diffuse nature of the injury, which tends not to produce focal cognitive or behavioral deficits that are easily identified or tracked. Indeed it has been shown that patients with enduring symptoms have difficulty describing their problems; therefore, there is an urgent need for a sensitive measure of brain activity that corresponds with higher order cognitive processing. The development of a neurophysiological metric that maps to clinical resolution would inform decisions about diagnosis and prognosis, including the need for clinical intervention to address cognitive deficits. The literature suggests the need for assessment of concussion under cognitively demanding tasks. Here, a joint behavioral- high-density electroencephalography (EEG) paradigm was employed. This allows for the examination of cortical activity patterns during speech comprehension at various levels of degradation in a sentence verification task, imposing the need for higher-order cognitive processes. Eight participants with concussion listened to true-false sentences produced with either moderately to highly intelligible noise-vocoders. Behavioral data were simultaneously collected. The analysis of cortical activation patterns included 1) the examination of event-related potentials, including latency and source localization, and 2) measures of frequency spectra and associated power. Individual performance patterns were assessed during acute injury and a return visit several months following injury. Results demonstrate a combination of task-related electrophysiology measures correspond to changes in task performance during the course of recovery. Further, a discriminant function analysis suggests EEG measures are more sensitive than behavioral measures in distinguishing between individuals with concussion and healthy controls at both injury and recovery, suggesting the robustness of neurophysiological measures during a cognitively demanding task to both injury and persisting pathophysiology.
ContributorsUtianski, Rene (Author) / Liss, Julie M (Thesis advisor) / Berisha, Visar (Committee member) / Caviness, John N (Committee member) / Dorman, Michael (Committee member) / Arizona State University (Publisher)
Created2014
Description
Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after activities. Electrical neurostimulation based on the "Gate Theory of Pain" is a known to way to reduce pain but current devices to do this are bulky and not well suited to implantation in peripheral tissues. There is also an increased risk associated with surgery which limits the use of these devices. This research has designed and constructed wireless ultrasound powered microstimulators that are much smaller and injectable and so involve less implantation trauma. These devices are small enough to fit through an 18 gauge syringe needle increasing their potential for clinical use. These piezoelectric microdevices convert mechanical energy into electrical energy that then is used to block pain. The design and performance of these miniaturized devices was modeled by computer while constructed devices were evaluated in animal experiments. The devices are capable of producing 500ms pulses with an intensity of 2 mA into a 2 kilo-ohms load. Using the rat as an animal model, a series of experiments were conducted to evaluate the in-vivo performance of the devices.
ContributorsZong, Xi (Author) / Towe, Bruce (Thesis advisor) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
153905-Thumbnail Image.png
Description
Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb,

Noninvasive neuromodulation could help treat many neurological disorders, but existing techniques have low resolution and weak penetration. Ultrasound (US) shows promise for stimulation of smaller areas and subcortical structures. However, the mechanism and parameter design are not understood. US can stimulate tail and hindlimb movements in rats, but not forelimb, for unknown reasons. Potentially, US could also stimulate peripheral or enteric neurons for control of blood glucose.

To better understand the inconsistent effects across rat motor cortex, US modulation of electrically-evoked movements was tested. A stimulation array was implanted on the cortical surface and US (200 kHz, 30-60 W/cm2 peak) was applied while measuring changes in the evoked forelimb and hindlimb movements. Direct US stimulation of the hindlimb was also studied. To test peripheral effects, rat blood glucose levels were measured while applying US near the liver.

No short-term motor modulation was visible (95% confidence interval: -3.5% to +5.1% forelimb, -3.8% to +5.5% hindlimb). There was significant long-term (minutes-order) suppression (95% confidence interval: -3.7% to -10.8% forelimb, -3.8% to -11.9% hindlimb). This suppression may be due to the considerable heating (+1.8°C between US
on-US conditions); effects of heat and US were not separable in this experiment. US directly evoked hindlimb and scrotum movements in some sessions. This required a long interval, at least 3 seconds between US bursts. Movement could be evoked with much shorter pulses than used in literature (3 ms). The EMG latency (10 ms) was compatible with activation of corticospinal neurons. The glucose modulation test showed a strong increase in a few trials, but across all trials found no significant effect.

The single motor response and the long refractory period together suggest that only the beginning of the US burst had a stimulatory effect. This would explain the lack of short-term modulation, and suggests future work with shorter pulses could better explore the missing forelimb response. During the refractory period there was no change in the electrically-evoked response, which suggests the US stimulation mechanism is independent of normal brain activity. These results challenge the literature-standard protocols and provide new insights on the unknown mechanism.
ContributorsGulick, Daniel Withers (Author) / Kleim, Jeffrey (Thesis advisor) / Towe, Bruce (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Herman, Richard (Committee member) / Helms Tillery, Steven (Committee member) / Arizona State University (Publisher)
Created2015
157380-Thumbnail Image.png
Description
A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced

A direct Magnetic Resonance (MR)-based neural activity mapping technique with high spatial and temporal resolution may accelerate studies of brain functional organization.

The most widely used technique for brain functional imaging is functional Magnetic Resonance Image (fMRI). The spatial resolution of fMRI is high. However, fMRI signals are highly influenced by the vasculature in each voxel and can be affected by capillary orientation and vessel size. Functional MRI analysis may, therefore, produce misleading results when voxels are nearby large vessels. Another problem in fMRI is that hemodynamic responses are slower than the neuronal activity. Therefore, temporal resolution is limited in fMRI. Furthermore, the correlation between neural activity and the hemodynamic response is not fully understood. fMRI can only be considered an indirect method of functional brain imaging.

Another MR-based method of functional brain mapping is neuronal current magnetic resonance imaging (ncMRI), which has been studied over several years. However, the amplitude of these neuronal current signals is an order of magnitude smaller than the physiological noise. Works on ncMRI include simulation, phantom experiments, and studies in tissue including isolated ganglia, optic nerves, and human brains. However, ncMRI development has been hampered due to the extremely small signal amplitude, as well as the presence of confounding signals from hemodynamic changes and other physiological noise.

Magnetic Resonance Electrical Impedance Tomography (MREIT) methods could have the potential for the detection of neuronal activity. In this technique, small external currents are applied to a body during MR scans. This current flow produces a magnetic field as well as an electric field. The altered magnetic flux density along the main magnetic field direction caused by this current flow can be obtained from phase images. When there is neural activity, the conductivity of the neural cell membrane changes and the current paths around the neurons change consequently. Neural spiking activity during external current injection, therefore, causes differential phase accumulation in MR data. Statistical analysis methods can be used to identify neuronal-current-induced magnetic field changes.
ContributorsFu, Fanrui (Author) / Sadleir, Rosalind (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Kleim, Jeffrey (Committee member) / Muthuswamy, Jitendran (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
156964-Thumbnail Image.png
Description
Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane

Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space.

The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders.
ContributorsKlein, Joshua (Author) / Buneo, Christopher (Thesis advisor) / Helms-Tillery, Stephen (Committee member) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2018
133469-Thumbnail Image.png
Description
Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays

Vagal Nerve Stimulation (VNS) has been shown to be a promising therapeutic technique in treating many neurological diseases, including epilepsy, stroke, traumatic brain injury, and migraine headache. The mechanisms by which VNS acts, however, are not fully understood but may involve changes in cerebral blood flow. The vagus nerve plays a significant role in the regulation of heart rate and cerebral blood flow that are altered during VNS. Here, we examined the effects of acute vagal nerve stimulation on both heart rate and cerebral blood flow. Laser Speckle Contrast Analysis (LASCA) was used to analyze the cerebral blood flow of male Long\u2014Evans rats. Results showed two distinct patterns of responses whereby animals either experienced a mild or severe decrease in heart rate during VNS. Further, animals that displayed mild heart rate decreases showed an increase in cerebral blood flow that persisted beyond VNS. Animals that displayed severe decreases showed a transient decrease in cerebral blood flow followed by an increase that was greater than that observed in mild animals but progressively decreased after VNS. The results suggest two distinct patterns of changes in both heart rate and cerebral blood flow that may be related to the intensity of VNS.
ContributorsHillebrand, Peter Timothy (Author) / Kleim, Jeffrey (Thesis director) / Helms Tillery, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154148-Thumbnail Image.png
Description
Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this

Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this control. In short, learning became a key component in controlling these systems. As a result, BMIs have become ideal tools to probe and explore brain activity, since they allow the isolation of neural inputs and systematic altering of the relationships between the neural signals and output. I have used BMIs to explore the process of brain adaptability in a motor-like task. To this end, I trained non-human primates to control a 3D cursor and adapt to two different perturbations: a visuomotor rotation, uniform across the neural ensemble, and a decorrelation task, which non-uniformly altered the relationship between the activity of particular neurons in an ensemble and movement output. I measured individual and population level changes in the neural ensemble as subjects honed their skills over the span of several days. I found some similarities in the adaptation process elicited by these two tasks. On one hand, individual neurons displayed tuning changes across the entire ensemble after task adaptation: most neurons displayed transient changes in their preferred directions, and most neuron pairs showed changes in their cross-correlations during the learning process. On the other hand, I also measured population level adaptation in the neural ensemble: the underlying neural manifolds that control these neural signals also had dynamic changes during adaptation. I have found that the neural circuits seem to apply an exploratory strategy when adapting to new tasks. Our results suggest that information and trajectories in the neural space increase after initially introducing the perturbations, and before the subject settles into workable solutions. These results provide new insights into both the underlying population level processes in motor learning, and the changes in neural coding which are necessary for subjects to learn to control neuroprosthetics. Understanding of these mechanisms can help us create better control algorithms, and design training paradigms that will take advantage of these processes.
ContributorsArmenta Salas, Michelle (Author) / Helms Tillery, Stephen I (Thesis advisor) / Si, Jennie (Committee member) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2015
154988-Thumbnail Image.png
Description
Stromal cell-derived factor-1α (SDF-1α) and its key receptor, CXCR4 are ubiquitously expressed in systems across the body (e.g. liver, skin, lung, etc.). This signaling axis regulates a myriad of physiological processes that range from maintaining of organ homeostasis in adults to, chemotaxis of stem/progenitor and immune cell types after injury.

Stromal cell-derived factor-1α (SDF-1α) and its key receptor, CXCR4 are ubiquitously expressed in systems across the body (e.g. liver, skin, lung, etc.). This signaling axis regulates a myriad of physiological processes that range from maintaining of organ homeostasis in adults to, chemotaxis of stem/progenitor and immune cell types after injury. Given its potential role as a therapeutic target for diverse applications, surprisingly little is known about how SDF-1α mediated signaling propagates through native tissues. This limitation ultimately constrains rational design of interventional biomaterials that aim to target the SDF-1α/CXCR4 signaling axis. One application of particular interest is traumatic brain injury (TBI) for which, there are currently no means of targeting the underlying biochemical pathology to improve prognosis.

Growing evidence suggests a relationship between SDF-1α/CXCR4 signaling and endogenous neural progenitor/stem cells (NPSC)-mediated regeneration after neural injury. Long-term modulation of the SDF-1α/CXCR4 signaling axis is thus hypothesized as a possible avenue for harnessing and amplifying endogenous regenerative mechanisms after TBI. In order to understand how the SDF-1α/CXCR4 signaling can be modulated in vivo, we first developed and characterized a sustained protein delivery platform in vitro. We were the first, to our knowledge, to demonstrate that protein release profiles from poly(D,L,-lactic-co-glycolic) acid (PLGA) particles can be tuned independent of particle fabrication parameters via centrifugal fractioning. This process of physically separating the particles altered the average diameter of a particle population, which is in turn was correlated to critical release characteristics. Secondly, we demonstrated sustained release of SDF-1α from PLGA/fibrin composites (particles embedded in fibrin) with tunable burst release as a function of fibrin concentration. Finally, we contrasted the spatiotemporal localization of endogenous SDF-1α and CXCR4 expression in response to either bolus or sustained release of exogenous SDF-1α. Sustained release of exogenous SDF-1α induced spatially diffuse endogenous SDF-1/CXCR4 expression relative to bolus SDF-1 administration; however, the observed effects were transient in both cases, persisting only to a maximum of 3 days post injection. These studies will inform future systematic evaluations of strategies that exploit SDF-1α/CXCR4 signaling for diverse applications.
ContributorsDutta, Dipankar (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Kleim, Jeffrey (Committee member) / Nikkhah, Mehdi (Committee member) / Sirianni, Rachael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2016
155901-Thumbnail Image.png
Description
Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp.

Transcranial electrical stimulation (tES) is a non-invasive brain stimulation therapy that has shown potential in improving motor, physiological and cognitive functions in healthy and diseased population. Typical tES procedures involve application of weak current (< 2 mA) to the brain via a pair of large electrodes placed on the scalp. While the therapeutic benefits of tES are promising, the efficacy of tES treatments is limited by the knowledge of how current travels in the brain. It has been assumed that the current density and electric fields are the largest, and thus have the most effect, in brain structures nearby the electrodes. Recent studies using finite element modeling (FEM) have suggested that current patterns in the brain are diffuse and not concentrated in any particular brain structure. Although current flow modeling is useful means of informing tES target optimization, few studies have validated tES FEM models against experimental measurements. MREIT-CDI can be used to recover magnetic flux density caused by current flow in a conducting object. This dissertation reports the first comparisons between experimental data from in-vivo human MREIT-CDI during tES and results from tES FEM using head models derived from the same subjects. First, tES FEM pipelines were verified by confirming FEM predictions agreed with analytic results at the mesh sizes used and that a sufficiently large head extent was modeled to approximate results on human subjects. Second, models were used to predict magnetic flux density, and predicted and MREIT-CDI results were compared to validate and refine modeling outcomes. Finally, models were used to investigate inter-subject variability and biological side effects reported by tES subjects. The study demonstrated good agreements in patterns between magnetic flux distributions from experimental and simulation data. However, the discrepancy in scales between simulation and experimental data suggested that tissue conductivities typically used in tES FEM might be incorrect, and thus performing in-vivo conductivity measurements in humans is desirable. Overall, in-vivo MREIT-CDI in human heads has been established as a validation tool for tES predictions and to study the underlying mechanisms of tES therapies.
ContributorsIndahlastari, Aprinda (Author) / Sadleir, Rosalind J (Thesis advisor) / Abbas, James (Committee member) / Frakes, David (Committee member) / Kleim, Jeffrey (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2017