Matching Items (321)
Filtering by

Clear all filters

153713-Thumbnail Image.png
Description
Colorectal cancer is the second-highest cause of cancer-related deaths in the United States with approximately 50,000 estimated deaths in 2015. The advanced stages of colorectal cancer has a poor five-year survival rate of 10%, whereas the diagnosis in early stages of development has showed a more favorable five-year survival

Colorectal cancer is the second-highest cause of cancer-related deaths in the United States with approximately 50,000 estimated deaths in 2015. The advanced stages of colorectal cancer has a poor five-year survival rate of 10%, whereas the diagnosis in early stages of development has showed a more favorable five-year survival rate of 90%. Early diagnosis of colorectal cancer is achievable if colorectal polyps, a possible precursor to cancer, are detected and removed before developing into malignancy.

The preferred method for polyp detection and removal is optical colonoscopy. A colonoscopic procedure consists of two phases: (1) insertion phase during which a flexible endoscope (a flexible tube with a tiny video camera at the tip) is advanced via the anus and then gradually to the end of the colon--called the cecum, and (2) withdrawal phase during which the endoscope is gradually withdrawn while colonoscopists examine the colon wall to find and remove polyps. Colonoscopy is an effective procedure and has led to a significant decline in the incidence and mortality of colon cancer. However, despite many screening and therapeutic advantages, 1 out of every 4 polyps and 1 out of 13 colon cancers are missed during colonoscopy.

There are many factors that contribute to missed polyps and cancers including poor colon preparation, inadequate navigational skills, and fatigue. Poor colon preparation results in a substantial portion of colon covered with fecal content, hindering a careful examination of the colon. Inadequate navigational skills can prevent a colonoscopist from examining hard-to-reach regions of the colon that may contain a polyp. Fatigue can manifest itself in the performance of a colonoscopist by decreasing diligence and vigilance during procedures. Lack of vigilance may prevent a colonoscopist from detecting the polyps that briefly appear in the colonoscopy videos. Lack of diligence may result in hasty examination of the colon that is likely to miss polyps and lesions.

To reduce polyp and cancer miss rates, this research presents a quality assurance system with 3 components. The first component is an automatic polyp detection system that highlights the regions with suspected polyps in colonoscopy videos. The goal is to encourage more vigilance during procedures. The suggested polyp detection system consists of several novel modules: (1) a new patch descriptor that characterizes image appearance around boundaries more accurately and more efficiently than widely-used patch descriptors such HoG, LBP, and Daisy; (2) A 2-stage classification framework that is able to enhance low level image features prior to classification. Unlike the traditional way of image classification where a single patch undergoes the processing pipeline, our system fuses the information extracted from a pair of patches for more accurate edge classification; (3) a new vote accumulation scheme that robustly localizes objects with curvy boundaries in fragmented edge maps. Our voting scheme produces a probabilistic output for each polyp candidate but unlike the existing methods (e.g., Hough transform) does not require any predefined parametric model of the object of interest; (4) and a unique three-way image representation coupled with convolutional neural networks (CNNs) for classifying the polyp candidates. Our image representation efficiently captures a variety of features such as color, texture, shape, and temporal information and significantly improves the performance of the subsequent CNNs for candidate classification. This contrasts with the exiting methods that mainly rely on a subset of the above image features for polyp detection. Furthermore, this research is the first to investigate the use of CNNs for polyp detection in colonoscopy videos.

The second component of our quality assurance system is an automatic image quality assessment for colonoscopy. The goal is to encourage more diligence during procedures by warning against hasty and low quality colon examination. We detect a low quality colon examination by identifying a number of consecutive non-informative frames in videos. We base our methodology for detecting non-informative frames on two key observations: (1) non-informative frames

most often show an unrecognizable scene with few details and blurry edges and thus their information can be locally compressed in a few Discrete Cosine Transform (DCT) coefficients; however, informative images include much more details and their information content cannot be summarized by a small subset of DCT coefficients; (2) information content is spread all over the image in the case of informative frames, whereas in non-informative frames, depending on image artifacts and degradation factors, details may appear in only a few regions. We use the former observation in designing our global features and the latter in designing our local image features. We demonstrated that the suggested new features are superior to the existing features based on wavelet and Fourier transforms.

The third component of our quality assurance system is a 3D visualization system. The goal is to provide colonoscopists with feedback about the regions of the colon that have remained unexamined during colonoscopy, thereby helping them improve their navigational skills. The suggested system is based on a new 3D reconstruction algorithm that combines depth and position information for 3D reconstruction. We propose to use a depth camera and a tracking sensor to obtain depth and position information. Our system contrasts with the existing works where the depth and position information are unreliably estimated from the colonoscopy frames. We conducted a use case experiment, demonstrating that the suggested 3D visualization system can determine the unseen regions of the navigated environment. However, due to technology limitations, we were not able to evaluate our 3D visualization system using a phantom model of the colon.
ContributorsTajbakhsh, Nima (Author) / Liang, Jianming (Thesis advisor) / Greenes, Robert (Committee member) / Scotch, Matthew (Committee member) / Arizona State University (Publisher)
Created2015
153975-Thumbnail Image.png
Description
Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage has shown to be a promising therapy to improve patients’

Breast cancer is the most common cancer and currently the second leading cause of death among women in the United States. Patients’ five-year relative survival rate decreases from 99% to 25% when breast cancer is diagnosed late. Immune checkpoint blockage has shown to be a promising therapy to improve patients’ outcome in many other cancers. However, due to the lack of early diagnosis, the treatment is normally given in the later stages. An early diagnosis system for breast cancer could potentially revolutionize current treatment strategies, improve patients’ outcomes and even eradicate the disease. The current breast cancer diagnostic methods cannot meet this demand. A simple, effective, noninvasive and inexpensive early diagnostic technology is needed. Immunosignature technology leverages the power of the immune system to find cancer early. Antibodies targeting tumor antigens in the blood are probed on a high-throughput random peptide array and generate a specific binding pattern called the immunosignature.

In this dissertation, I propose a scenario for using immunosignature technology to detect breast cancer early and to implement an early treatment strategy by using the PD-L1 immune checkpoint inhibitor. I develop a methodology to describe the early diagnosis and treatment of breast cancer in a FVB/N neuN breast cancer mouse model. By comparing FVB/N neuN transgenic mice and age-matched wild type controls, I have found and validated specific immunosignatures at multiple time points before tumors are palpable. Immunosignatures change along with tumor development. Using a late-stage immunosignature to predict early samples, or vice versa, cannot achieve high prediction performance. By using the immunosignature of early breast cancer, I show that at the time of diagnosis, early treatment with the checkpoint blockade, anti-PD-L1, inhibits tumor growth in FVB/N neuN transgenic mouse model. The mRNA analysis of the PD-L1 level in mice mammary glands suggests that it is more effective to have treatment early.

Novel discoveries are changing understanding of breast cancer and improving strategies in clinical treatment. Researchers and healthcare professionals are actively working in the early diagnosis and early treatment fields. This dissertation provides a step along the road for better diagnosis and treatment of breast cancer.
ContributorsDuan, Hu (Author) / Johnston, Stephen Albert (Thesis advisor) / Hartwell, Leland Harrison (Committee member) / Dinu, Valentin (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015
Description
Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli. These complexities make it difficult to isolate and assess the effects of specific parameters including matrix stiffness and tumor architecture on disease progression. In this regard, morphologically accurate tumor models are becoming instrumental

Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli. These complexities make it difficult to isolate and assess the effects of specific parameters including matrix stiffness and tumor architecture on disease progression. In this regard, morphologically accurate tumor models are becoming instrumental to perform fundamental studies on cancer cell invasion within well-controlled conditions. In this study, the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique was explored to microengineer a 3D breast tumor model. The microfabrication process presented herein enabled precise localization of the cells and creation of high stiffness constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and normal mammary epithelial cells (MCF10A) were embedded separately within the tumor model and cellular proliferation, migration and cytoskeletal organization were assessed. Proliferation of metastatic MDA-MB-231 cells was significantly higher than tumorigenic MCF7 and normal mammary MCF10A cells. MDA-MB-231 exhibited highly migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that were confined within the micropatterned circular features. F-actin staining revealed unique 3D protrusions in MDA-MB-231 cells as they migrated throughout the surrounding matrix. Alternatively, there were abundance of 3D clusters formed by MCF7 and MCF10A cells. The results revealed that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in creating 3D tumor models with well-defined features and tunable stiffness for detailed studies on cancer cell invasion and drug responsiveness.
ContributorsSam, Feba Susan (Author) / Nikkhah, Mehdi (Thesis advisor) / Ros, Robert (Committee member) / Smith, Barbara (Committee member) / Arizona State University (Publisher)
Created2015
154244-Thumbnail Image.png
Description
Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of

Among electrical properties of living tissues, the differentiation of tissues or organs provided by electrical conductivity is superior. The pathological condition of living tissues is inferred from the spatial distribution of conductivity. Magnetic Resonance Electrical Impedance Tomography (MREIT) is a relatively new non-invasive conductivity imaging technique. The majority of conductivity reconstruction algorithms are suitable for isotropic conductivity distributions. However, tissues such as cardiac muscle and white matter in the brain are highly anisotropic. Until recently, the conductivity distributions of anisotropic samples were solved using isotropic conductivity reconstruction algorithms. First and second spatial derivatives of conductivity (∇σ and ∇2σ ) are integrated to obtain the conductivity distribution. Existing algorithms estimate a scalar conductivity instead of a tensor in anisotropic samples.

Accurate determination of the spatial distribution of a conductivity tensor in an anisotropic sample necessitates the development of anisotropic conductivity tensor image reconstruction techniques. Therefore, experimental studies investigating the effect of ∇2σ on degree of anisotropy is necessary. The purpose of the thesis is to compare the influence of ∇2σ on the degree of anisotropy under two different orthogonal current injection pairs.

The anisotropic property of tissues such as white matter is investigated by constructing stable TX-151 gel layer phantoms with varying degrees of anisotropy. MREIT and Diffusion Magnetic Resonance Imaging (DWI) experiments were conducted to probe the conductivity and diffusion properties of phantoms. MREIT involved current injection synchronized to a spin-echo pulse sequence. Similarities and differences in the divergence of the vector field of ∇σ (∇2σ) among anisotropic samples subjected to two different current injection pairs were studied. DWI of anisotropic phantoms involved the application of diffusion-weighted magnetic field gradients with a spin-echo pulse sequence. Eigenvalues and eigenvectors of diffusion tensors were compared to characterize diffusion properties of anisotropic phantoms.

The orientation of current injection electrode pair and degree of anisotropy influence the spatial distribution of ∇2σ. Anisotropy in conductivity is preserved in ∇2σ subjected to non-symmetric electric fields. Non-symmetry in electric field is observed in current injections parallel and perpendicular to the orientation of gel layers. The principal eigenvalue and eigenvector in the phantom with maximum anisotropy display diffusion anisotropy.
ContributorsAshok Kumar, Neeta (Author) / Sadleir, Rosalind J (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Muthuswamy, Jitendran (Committee member) / Arizona State University (Publisher)
Created2015
154254-Thumbnail Image.png
Description
Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments

Aortic pathologies such as coarctation, dissection, and aneurysm represent a

particularly emergent class of cardiovascular diseases and account for significant cardiovascular morbidity and mortality worldwide. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies and for planning their surgical repair. In vitro experiments are required to validate these simulations against real world data, and a pulsatile flow pump system can provide physiologic flow conditions characteristic of the aorta.

This dissertation presents improved experimental techniques for in vitro aortic blood flow and the increasingly larger parts of the human cardiovascular system. Specifically, this work develops new flow management and measurement techniques for cardiovascular flow experiments with the aim to improve clinical evaluation and treatment planning of aortic diseases.

The hypothesis of this research is that transient flow driven by a step change in volume flux in a piston-based pulsatile flow pump system behaves differently from transient flow driven by a step change in pressure gradient, the development time being substantially reduced in the former. Due to this difference in behavior, the response to a piston-driven pump can be predicted in order to establish inlet velocity and flow waveforms at a downstream phantom model.

The main objectives of this dissertation were: 1) to design, construct, and validate a piston-based flow pump system for aortic flow experiments, 2) to characterize temporal and spatial development of start-up flows driven by a piston pump that produces a step change from zero flow to a constant volume flux in realistic (finite) tube geometries for physiologic Reynolds numbers, and 3) to develop a method to predict downstream velocity and flow waveforms at the inlet of an aortic phantom model and determine the input waveform needed to achieve the intended waveform at the test section. Application of these newly improved flow management tools and measurement techniques were then demonstrated through in vitro experiments in patient-specific coarctation of aorta flow phantom models manufactured in-house and compared to computational simulations to inform and execute future experiments and simulations.
ContributorsChaudhury, Rafeed Ahmed (Author) / Frakes, David (Thesis advisor) / Adrian, Ronald J (Thesis advisor) / Vernon, Brent (Committee member) / Pizziconi, Vincent (Committee member) / Caplan, Michael (Committee member) / Arizona State University (Publisher)
Created2015
154263-Thumbnail Image.png
Description
Tracking microscale targets in soft tissue using implantable probes is important in clinical applications such as neurosurgery, chemotherapy and in neurophysiological application such as brain monitoring. In most of these applications, such tracking is done with visual feedback involving some imaging modality that helps localization of the targets through images

Tracking microscale targets in soft tissue using implantable probes is important in clinical applications such as neurosurgery, chemotherapy and in neurophysiological application such as brain monitoring. In most of these applications, such tracking is done with visual feedback involving some imaging modality that helps localization of the targets through images that are co-registered with stereotaxic coordinates. However, there are applications in brain monitoring where precision targeting of microscale targets such as single neurons need to be done in the absence of such visual feedback. In all of the above mentioned applications, it is important to understand the dynamics of mechanical stress and strain induced by the movement of implantable, often microscale probes in soft viscoelastic tissue. Propagation of such stresses and strains induce inaccuracies in positioning if they are not adequately compensated. The aim of this research is to quantitatively assess (a) the lateral propagation of stress and (b) the spatio-temporal distribution of strain induced by the movement of microscale probes in soft viscoelastic tissue. Using agarose hydrogel and a silicone derivative as two different bench-top models of brain tissue, we measured stress propagation during movement of microscale probes using a sensitive load cell. We further used a solution of microscale beads and the silicone derivative to quantitatively map the strain fields using video microscopy. The above measurements were done under two different types of microelectrode movement – first, a unidirectional movement and second, a bidirectional (inch-worm like) movement both of 30 μm step-size with 3min inter-movement interval. Results indicate movements of microscale probes can induce significant stresses as far as 500 μm laterally from the location of the probe. Strain fields indicate significantly high levels of displacements (in the order of 100 μm) within 100 μm laterally from the surface of the probes. The above measurements will allow us to build precise mechanical models of soft tissue and compensators that will enhance the accuracy of tracking microscale targets in soft tissue.
ContributorsTalebianmoghaddam, Shahrzad (Author) / Muthuswamy, Jitendran (Thesis advisor) / Towe, Bruce (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2015
154363-Thumbnail Image.png
Description
Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug discovery, development and validation. Ablation of dormant cancer will not only completely remove the cancer disease, but also will prevent any future recurrence. A novel hydrogel, Amikagel, was developed by crosslinking of aminoglycoside amikacin with a polyethylene glycol crosslinker. Aminoglycosides contain abundant amount of easily conjugable groups such as amino and hydroxyl moieties that were crosslinked to generate the hydrogel. Cancer cells formed 3D spheroidal structures that underwent near complete dormancy on Amikagel high-throughput drug discovery platform. Due to their dormant status, conventional anticancer drugs such as mitoxantrone and docetaxel that target the actively dividing tumor phenotype were found to be ineffective. Hypothesis driven rational drug discovery approaches were used to identify novel pathways that could sensitize dormant cancer cells to death. Strategies were used to further accelerate the dormant cancer cell death to save time required for the therapeutic outcome.

Amikagel’s properties were chemo-mechanically tunable and directly impacted the outcome of tumor dormancy or relapse. Exposure of dormant spheroids to weakly stiff and adhesive formulation of Amikagel resulted in significant relapse, mimicking the response to changes in extracellular matrix around dormant tumors. Relapsed cells showed significant differences in their metastatic potential compared to the cells that remained dormant after the induction of relapse. Further, the dissertation discusses the use of Amikagels as novel pDNA binding resins in microbead and monolithic formats for potential use in chromatographic purifications. High abundance of amino groups allowed their utilization as novel anion-exchange pDNA binding resins. This dissertation discusses Amikagel formulations for pDNA binding, metastatic cancer cell separation and novel drug discovery against tumor dormancy and relapse.
ContributorsGrandhi, Taraka Sai Pavan (Author) / Rege, Kaushal (Thesis advisor) / Meldrum, Deirdre R (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Caplan, Michael (Committee member) / Tian, Yanqing (Committee member) / Arizona State University (Publisher)
Created2016
154380-Thumbnail Image.png
Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand,

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.

First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).

Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
ContributorsShi, Jie, Ph.D (Author) / Wang, Yalin (Thesis advisor) / Caselli, Richard (Committee member) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2016
157806-Thumbnail Image.png
Description
The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins,

The WNT signaling pathway plays numerous roles in development and maintenance of adult homeostasis. In concordance with it’s numerous roles, dysfunction of WNT signaling leads to a variety of human diseases ranging from developmental disorders to cancer. WNT signaling is composed of a family of 19 WNT soluble secreted glycoproteins, which are evolutionarily conserved across all phyla of the animal kingdom. WNT ligands interact most commonly with a family of receptors known as frizzled (FZ) receptors, composed of 10 independent genes. Specific interactions between WNT proteins and FZ receptors are not well characterized and are known to be promiscuous, Traditionally canonical WNT signaling is described as a binary system in which WNT signaling is either off or on. In the ‘off’ state, in the absence of a WNT ligand, cytoplasmic β-catenin is continuously degraded by the action of the APC/Axin/GSK-3β destruction complex. In the ‘on’ state, when WNT binds to its Frizzled (Fz) receptor and LRP coreceptor, this protein destruction complex is disrupted, allowing β-catenin to translocate into the nucleus where it interacts with the DNA-bound T cell factor/lymphoid factor (TCF/LEF) family of proteins to regulate target gene expression. However in a variety of systems in development and disease canonical WNT signaling acts in a gradient fashion, suggesting more complex regulation of β-catenin transcriptional activity. As such, the traditional ‘binary’ view of WNT signaling does not clearly explain how this graded signal is transmitted intracellularly to control concentration-dependent changes in gene expression and cell identity. I have developed an in vitro human pluripotent stem cell (hPSC)-based model that recapitulates the same in vivo developmental effects of the WNT signaling gradient on the anterior-posterior (A/P) patterning of the neural tube observed during early development. Using RNA-seq and ChIP-seq I have characterized β-catenin binding at different levels of WNT signaling and identified different classes of β-catenin peaks that bind cis-regulatory elements to influence neural cell fate. This work expands the traditional binary view of canonical WNT signaling and illuminates WNT/β-catenin activity in other developmental and diseased contexts.
ContributorsCutts, Joshua Patrick (Author) / Brafman, David A (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Nikkhah, Mehdi (Committee member) / Wang, Xiao (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2019
157696-Thumbnail Image.png
Description
Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a

Previously accomplished research examined sensory integration between upper limb proprioception and tactile sensation. The active proprioceptive-tactile relationship points towards an opportunity to examine neuromodulation effects on sensory integration with respect to proprioceptive error magnitude and direction. Efforts to improve focus and attention during upper limb proprioceptive tasks results in a decrease of proprioceptive error magnitudes and greater endpoint accuracy. Increased focus and attention can also be correlated to neurophysiological activity in the Locus Coeruleus (LC) during a variety of mental tasks. Through non-invasive trigeminal nerve stimulation, it may be possible to affect the activity of the LC and induce improvements in arousal and attention that would assist in proprioceptive estimation. The trigeminal nerve projects to the LC through the mesencephalic nucleus of the trigeminal complex, providing a pathway similar to the effects seen from vagus nerve stimulation. In this experiment, the effect of trigeminal nerve stimulation (TNS) on proprioceptive ability is evaluated by the proprioceptive estimation error magnitude and direction, while LC activation via autonomic pathways is indirectly measured using pupil diameter, pupil recovery time, and pupil velocity. TNS decreases proprioceptive error magnitude in 59% of subjects, while having no measurable impact on proprioceptive strategy. Autonomic nervous system changes were observed in 88% of subjects, with mostly parasympathetic activation and a mixed sympathetic effect.
ContributorsOrthlieb, Gerrit Chi Luk (Author) / Helms-Tillery, Stephen (Thesis advisor) / Tanner, Justin (Committee member) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019