Matching Items (3)
Filtering by

Clear all filters

152241-Thumbnail Image.png
Description
The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response characteristics, inter-subject variability, consistency of effect across outcome measures, and day-to-day variability. Eight subjects with PD and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitude conditions: approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Overall symptom severity and performance on a battery of motor tasks - gait, postural control, single-joint flexion-extension, postural tremor, and tapping - were assessed at each condition using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and quantitative measures. Data were analyzed to determine whether subjects demonstrated a threshold response (one decrement in stimulation resulted in ≥ 70% of the maximum change) or a graded response to reduced stimulation. Day-to-day variability was assessed using the CDS data from the three testing sessions. Although the cohort as a whole demonstrated a graded response on several measures, there was high variability across subjects, with subsets exhibiting graded, threshold, or minimal responses. Some subjects experienced greater variability in their CDS performance across the three days than the change induced by reducing stimulation. For several tasks, a subset of subjects exhibited improved performance at one or more of the reduced conditions. Reducing stimulation did not affect all subjects equally, nor did it uniformly affect each subject's performance across tasks. These results indicate that altered recruitment of neural structures can differentially affect motor capabilities and demonstrate the need for clinical consideration of the effects on multiple symptoms across several days when selecting DBS parameters.
ContributorsConovaloff, Alison (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Mahant, Padma (Committee member) / Jung, Ranu (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
153500-Thumbnail Image.png
Description
Parkinson's disease (PD) is a neurodegenerative disorder that produces a characteristic set of neuromotor deficits that sometimes includes reduced amplitude and velocity of movement. Several studies have shown that people with PD improved their motor performance when presented with external cues. Other work has demonstrated that high velocity

Parkinson's disease (PD) is a neurodegenerative disorder that produces a characteristic set of neuromotor deficits that sometimes includes reduced amplitude and velocity of movement. Several studies have shown that people with PD improved their motor performance when presented with external cues. Other work has demonstrated that high velocity and large amplitude exercises can increase the amplitude and velocity of movement in simple carryover tasks in the upper and lower extremities. Although the cause for these effects is not known, improvements due to cueing suggest that part of the neuromotor deficit in PD is in the integration of sensory feedback to produce motor commands. Previous studies have documented some somatosensory deficits, but only limited information is available regarding the nature and magnitude of sensorimotor deficits in the shoulder of people with PD. The goals of this research were to characterize the sensorimotor impairment in the shoulder joint of people with PD and to investigate the use of visual feedback and large amplitude/high velocity exercises to target PD-related motor deficits. Two systems were designed and developed to use visual feedback to assess the ability of participants to accurately adjust limb placement or limb movement velocity and to encourage improvements in performance of these tasks. Each system was tested on participants with PD, age-matched control subjects and young control subjects to characterize and compare limb placement and velocity control capabilities. Results demonstrated that participants with PD were less accurate at placing their limbs than age-matched or young control subjects, but that their performance improved over the course of the test session such that by the end, the participants with PD performed as well as controls. For the limb velocity feedback task, participants with PD and age-matched control subjects were less accurate than young control subjects, but at the end of the session, participants with PD and age-matched control subjects were as accurate as the young control subjects. This study demonstrates that people with PD were able to improve their movement patterns based on visual feedback of performance and suggests that this feedback paradigm may be useful in exercise programs for people with PD.
ContributorsSmith, Catherine (Author) / Abbas, James J (Thesis advisor) / Ingalls, Todd (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Buneo, Christopher (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2015
171607-Thumbnail Image.png
Description
Nearly one percent of the population over 65 years of age is living with Parkinson’s disease (PD) and this population worldwide is projected to be approximately nine million by 2030. PD is a progressive neurological disease characterized by both motor and cognitive impairments. One of the most serious challenges for

Nearly one percent of the population over 65 years of age is living with Parkinson’s disease (PD) and this population worldwide is projected to be approximately nine million by 2030. PD is a progressive neurological disease characterized by both motor and cognitive impairments. One of the most serious challenges for an individual as the disease progresses is the increasing severity of gait and posture impairments since they result in debilitating conditions such as freezing of gait, increased likelihood of falls, and poor quality of life. Although dopaminergic therapy and deep brain stimulation are generally effective, they often fail to improve gait and posture deficits. Several recent studies have employed real-time feedback (RTF) of gait parameters to improve walking patterns in PD. In earlier work, results from the investigation of the effects of RTF of step length and back angle during treadmill walking demonstrated that people with PD could follow the feedback and utilize it to modulate movements favorably in a manner that transferred, at least acutely, to overground walking. In this work, recent advances in wearable technologies were leveraged to develop a wearable real-time feedback (WRTF) system that can monitor and evaluate movements and provide feedback during daily activities that involve overground walking. Specifically, this work addressed the challenges of obtaining accurate gait and posture measures from wearable sensors in real-time and providing auditory feedback on the calculated real-time measures for rehabilitation. An algorithm was developed to calculate gait and posture variables from wearable sensor measurements, which were then validated against gold-standard measurements. The WRTF system calculates these measures and provides auditory feedback in real-time. The WRTF system was evaluated as a potential rehabilitation tool for use by people with mild to moderate PD. Results from the study indicated that the system can accurately measure step length and back angle, and that subjects could respond to real-time auditory feedback in a manner that improved their step length and uprightness. These improvements were exhibited while using the system that provided feedback and were sustained in subsequent trials immediately thereafter in which subjects walked without receiving feedback from the system.
ContributorsMuthukrishnan, Niveditha (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Thesis advisor) / Shill, Holly A (Committee member) / Honeycutt, Claire (Committee member) / Turaga, Pavan (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2022