Matching Items (313)
Filtering by

Clear all filters

152219-Thumbnail Image.png
Description
In a conscious effort to combat the low enrollment of women in construction management, a program was created to retain women through a mentorship program - Advancing Women in Construction. A qualitative analysis, facilitated through a grounded theory approach, sought to understand if the program was indeed successful, and what

In a conscious effort to combat the low enrollment of women in construction management, a program was created to retain women through a mentorship program - Advancing Women in Construction. A qualitative analysis, facilitated through a grounded theory approach, sought to understand if the program was indeed successful, and what value did the students derive from the programs and participating in the mentoring process.
ContributorsEicher, Matthew (Author) / Wilkinson, Christine Kajikawa (Thesis advisor) / Calleroz-White, Mistalene (Committee member) / Gibson, Jr., G. Edward (Committee member) / Arizona State University (Publisher)
Created2013
152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
152240-Thumbnail Image.png
Description
A simple passion for reading compels many to enter the university literature classroom. What happens once they arrive may fuel that passion, or possibly destroy it. A romanticized relationship with literature proves to be an obstacle that hinders a deeper and richer engagement with texts. Primary research consisting of personal

A simple passion for reading compels many to enter the university literature classroom. What happens once they arrive may fuel that passion, or possibly destroy it. A romanticized relationship with literature proves to be an obstacle that hinders a deeper and richer engagement with texts. Primary research consisting of personal interviews, observations, and surveys, form the source of data for this dissertation project which was designed to examine how literature teachers engage their students with texts, discussion, and assignments in the university setting. Traditionally text centered and resolute, literature courses will need refashioning if they are to advance beyond erstwhile conventions. The goal of this study is to create space for a dialogue about the need for a pedagogy of literature.
ContributorsSanchez, Shillana (Author) / Goggin, Maureen (Thesis advisor) / Tobin, Beth (Thesis advisor) / Rose, Shirley (Committee member) / Arizona State University (Publisher)
Created2013
152201-Thumbnail Image.png
Description
Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After

Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After developing an algorithm for obtaining calcium scores from a CTA exam, a dual energy CTA exam was performed on patients at dose levels equivalent to levels for single energy CTA with a calcium scoring exam. Calcium Agatston scores obtained from the dual energy CTA exam were within ±11% of scores obtained with conventional calcium scoring exams. In the presence of highly attenuating coronary calcium plaques, the virtual non-calcium images obtained with dual energy CTA were able to successfully measure percent coronary stenosis within 5% of known stenosis values, which is not possible with single energy CTA images due to the presence of the calcium blooming artifact. After fabricating an anthropomorphic beating heart phantom with coronary plaques, characterization of soft plaque vulnerability to rupture or erosion was demonstrated with measurements of the distance from soft plaque to aortic ostium, percent stenosis, and percent lipid volume in soft plaque. A classification model was developed, with training data from the beating heart phantom and plaques, which utilized support vector machines to classify coronary soft plaque pixels as lipid or fibrous. Lipid versus fibrous classification with single energy CTA images exhibited a 17% error while dual energy CTA images in the classification model developed here only exhibited a 4% error. Combining the calcium blooming correction and the percent lipid volume methods developed in this work will provide physicians with metrics for increasing the positive predictive value of coronary CTA as well as expanding the use of coronary CTA to patients with highly attenuating calcium plaques.
ContributorsBoltz, Thomas (Author) / Frakes, David (Thesis advisor) / Towe, Bruce (Committee member) / Kodibagkar, Vikram (Committee member) / Pavlicek, William (Committee member) / Bouman, Charles (Committee member) / Arizona State University (Publisher)
Created2013
152150-Thumbnail Image.png
Description
This study used exploratory data analysis (EDA) to examine the use of a biofeedback intervention in the treatment of anxiety for college students diagnosed with an Autism Spectrum Disorder (ASD) (n=10) and in a typical college population (n=37). The use of EDA allowed for trends to emerge from the data

This study used exploratory data analysis (EDA) to examine the use of a biofeedback intervention in the treatment of anxiety for college students diagnosed with an Autism Spectrum Disorder (ASD) (n=10) and in a typical college population (n=37). The use of EDA allowed for trends to emerge from the data and provided a foundation for future research in the areas of biofeedback and accommodations for college students with ASD. Comparing the first five weeks of the study with the second five weeks of the 10 week study, both groups showed improvement in their control of heart rate variability, a physiological marker for anxiety used in biofeedback. The ASD group showed greater gains, more consistent gains, and less variability in raw scores than the typical group. EDA also revealed a pattern between participant attrition and a participant's biofeedback progress. Implications are discussed.
ContributorsWestlake, Garret (Author) / McCoy, Kathleen M. (Thesis advisor) / Brown, Jane T (Committee member) / DiGangi, Samuel A. (Committee member) / Caterino, Linda K (Committee member) / Arizona State University (Publisher)
Created2013
152241-Thumbnail Image.png
Description
The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response

The efficacy of deep brain stimulation (DBS) in Parkinson's disease (PD) has been convincingly demonstrated in studies that compare motor performance with and without stimulation, but characterization of performance at intermediate stimulation amplitudes has been limited. This study investigated the effects of changing DBS amplitude in order to assess dose-response characteristics, inter-subject variability, consistency of effect across outcome measures, and day-to-day variability. Eight subjects with PD and bilateral DBS systems were evaluated at their clinically determined stimulation (CDS) and at three reduced amplitude conditions: approximately 70%, 30%, and 0% of the CDS (MOD, LOW, and OFF, respectively). Overall symptom severity and performance on a battery of motor tasks - gait, postural control, single-joint flexion-extension, postural tremor, and tapping - were assessed at each condition using the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) and quantitative measures. Data were analyzed to determine whether subjects demonstrated a threshold response (one decrement in stimulation resulted in ≥ 70% of the maximum change) or a graded response to reduced stimulation. Day-to-day variability was assessed using the CDS data from the three testing sessions. Although the cohort as a whole demonstrated a graded response on several measures, there was high variability across subjects, with subsets exhibiting graded, threshold, or minimal responses. Some subjects experienced greater variability in their CDS performance across the three days than the change induced by reducing stimulation. For several tasks, a subset of subjects exhibited improved performance at one or more of the reduced conditions. Reducing stimulation did not affect all subjects equally, nor did it uniformly affect each subject's performance across tasks. These results indicate that altered recruitment of neural structures can differentially affect motor capabilities and demonstrate the need for clinical consideration of the effects on multiple symptoms across several days when selecting DBS parameters.
ContributorsConovaloff, Alison (Author) / Abbas, James (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Mahant, Padma (Committee member) / Jung, Ranu (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
152047-Thumbnail Image.png
Description
Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students

Chemistry as a subject is difficult to learn and understand, due in part to the specific language used by practitioners in their professional and scientific communications. The language and ways of representing chemical interactions have been grouped into three modes of representation used by chemistry instructors, and ultimately by students in understanding the discipline. The first of these three modes of representation is the symbolic mode, which uses a standard set of rules for chemical nomenclature set out by the IUPAC. The second mode of representation is that of microscopic, which depicts chemical compounds as discrete units made up of atoms and molecules, with a particular ratio of atoms to a molecule or formula unit. The third mode of representation is macroscopic, what can be seen, experienced, or measured directly, like ice melting or a color change during a chemical reaction. Recent evidence suggests that chemistry instructors can assist their students in making the connections between the modes of representation by incorporating all three modes into their teaching and discussions, and overtly connecting the modes during instruction. In this research, chemistry teachers at the community college level were observed over the course of an entire semester, to evaluate their instructional use of mode of representation. The students of these teachers were tested prior to and after a semester's worth of instruction, and changes in the basic chemistry conceptual knowledge of these students were compared. Additionally, a subset of the overall population that was pre- and post-tested was interviewed at length using demonstrations of chemical phenomenon that students were asked to translate using all three modes of representation. Analysis of the instruction of three community college teachers shows there were significant differences among these teachers in their instructional use of mode of representation. Additionally, the students of these three teachers had differential and statistically significant achievement over the course of the semester. This research supports results of other similar studies, as well as providing some unexpected results from the students involved.
ContributorsWood, Lorelei (Author) / Baker, Dale (Thesis advisor) / Ganesh, Tirupalavanam G. (Committee member) / Colleen, Megowan (Committee member) / Sujatha, Krishnaswamy (Committee member) / Arizona State University (Publisher)
Created2013
152055-Thumbnail Image.png
Description
To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform

To address the need of scientists and engineers in the United States workforce and ensure that students in higher education become scientifically literate, research and policy has called for improvements in undergraduate education in the sciences. One particular pathway for improving undergraduate education in the science fields is to reform undergraduate teaching. Only a limited number of studies have explored the pedagogical content knowledge of postsecondary level teachers. This study was conducted to characterize the PCK of biology faculty and explore the factors influencing their PCK. Data included semi-structured interviews, classroom observations, documents, and instructional artifacts. A qualitative inquiry was designed to conduct an in-depth investigation focusing on the PCK of six biology instructors, particularly the types of knowledge they used for teaching biology, their perceptions of teaching, and the social interactions and experiences that influenced their PCK. The findings of this study reveal that the PCK of the biology faculty included eight domains of knowledge: (1) content, (2) context, (3) learners and learning, (4) curriculum, (5) instructional strategies, (6) representations of biology, (7) assessment, and (8) building rapport with students. Three categories of faculty PCK emerged: (1) PCK as an expert explainer, (2) PCK as an instructional architect, and (3) a transitional PCK, which fell between the two prior categories. Based on the interpretations of the data, four social interactions and experiences were found to influence biology faculty PCK: (1) teaching experience, (2) models and mentors, (3) collaborations about teaching, and (4) science education research. The varying teaching perspectives of the faculty also influenced their PCK. This study shows that the PCK of biology faculty for teaching large introductory courses at large research institutions is heavily influenced by factors beyond simply years of teaching experience and expert content knowledge. Social interactions and experiences created by the institution play a significant role in developing the PCK of biology faculty.
ContributorsHill, Kathleen M. (Author) / Luft, Julie A. (Thesis advisor) / Baker, Dale (Committee member) / Orchinik, Miles (Committee member) / Arizona State University (Publisher)
Created2013
Description
Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly

Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth.
ContributorsOverstreet, Cynthia K (Author) / Helms Tillery, Stephen I (Thesis advisor) / Santos, Veronica (Committee member) / Buneo, Christopher (Committee member) / Otto, Kevin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013