Matching Items (8)
Filtering by

Clear all filters

133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137564-Thumbnail Image.png
Description
Revision hip procedures represent a large financial burden on hospitals and the problem will continue to worsen as the baby boomer generation ages and life expectancy goes up. The future problem is a complex issue that bridges scientific and anecdotal evidence and must be solved. A review of the current

Revision hip procedures represent a large financial burden on hospitals and the problem will continue to worsen as the baby boomer generation ages and life expectancy goes up. The future problem is a complex issue that bridges scientific and anecdotal evidence and must be solved. A review of the current total hip arthroplasty procedure in regards to the physical properties of the materials used for hip prostheses is given. Revision procedures can be caused by infection or basic wear and tear from the stress that that implant is subjected to daily. Infections on these implants often present themselves as medical biofilms. The mechanisms of biofilm formation include a complex system of enzymes that work to initiate a phenotypic response based on an established quorum sensing within the colony of bacteria. Surgical methods to treat infection include irrigation and debridement as well as loading drug cement spacers with antimicrobial in hopes of delivering the antibiotic locally. Research is being done to better model the transport of drug through the tissue surrounding the implant, and will hopefully one day be available for use in individual patients.
ContributorsMcDermand, Matthew Paul (Author) / Caplan, Michael (Thesis director) / Vernon, Brent (Committee member) / McLemore, Ryan (Committee member) / Barrett, The Honors College (Contributor)
Created2013-05
137683-Thumbnail Image.png
Description
Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we

Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we report on the development of temperature responsive copolymers, which are deliverable through a microcatheter at body temperature and then rapidly cure to form a highly elastic hydrogel. To our knowledge, this is the first physical-and chemical-crosslinked hydrogel capable of rapid crosslinking at temperatures above the gel transition temperature. The polymer system, poly(N-isopropylacrylamide-co-cysteamine-co-Jeffamine® M-1000 acrylamide) and poly(ethylene glycol) diacrylate, was evaluated in wide-neck aneurysm flow models to evaluate the stability of the hydrogels. Investigation of this polymer system indicates that the Jeffamine® M-1000 causes the gels to retain water, resulting in gels that are initially weak and viscous, but become stronger and more elastic after chemical crosslinking.
ContributorsLee, Elizabeth Jean (Author) / Vernon, Brent (Thesis director) / Brennecka, Celeste (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
147999-Thumbnail Image.png
Description

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the anticipation of such events. Communication between patient and provider was assessed as a potential barrier with respect to perceived provider LGBTQIA+ competency. This study applies the minority stress model, considering experiences of everyday stigma and minority stress as a predictor of healthcare utilization among sexual and gender minority students. The findings suggest a small but substantial correlation between minority stress and healthcare use with 23.7% of respondents delaying or not receiving one or more types of care due to fear of stigma or discrimination. Additionally, communication findings indicate a lack of standardization of LGBTQIA+ competent care with experiences varying greatly between respondents.

ContributorsZahn, Jennica (Author) / Davis, Olga (Thesis director) / LeMaster, Benny (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Advancing the understanding and treatment of many neurological disorders can be achieved by improving methods of neuronal detection at increased depth in the mammalian brain. Different cell subtypes cannot be detected using non-invasive techniques beyond 1 mm from cortical surface, in the context of targeting particular cell types in vivo

Advancing the understanding and treatment of many neurological disorders can be achieved by improving methods of neuronal detection at increased depth in the mammalian brain. Different cell subtypes cannot be detected using non-invasive techniques beyond 1 mm from cortical surface, in the context of targeting particular cell types in vivo (Wang, 2012). These limitations in the depth of imaging and targeting are due to optical scattering (Ntziachristos, 2010). In order to overcome these restrictions, longer wavelength fluorescent proteins have been utilized by researchers to see tagged cells at depth. Optical techniques such as two-photon and confocal microscopy have been used in combination with fluorescent proteins to expand depth, but are still limited by the penetration depth of light due to optical scattering (Lee, 2015). This research aims to build on other detection methods, such as the photoacoustic effect and automated fluorescence-guided electrophysiology, to overcome this limitation.

ContributorsAridi, Christina (Author) / Smith, Barbara (Thesis director) / Marschall, Ethan (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

SUMMARY: A failed attempt to conduct a systematic review of disparities in racial inclusivity in stroke rehabilitation research: A call to action Group Members: Adeline Beeler & Mikayla McNally Faculty Mentor(s): Dr. Sydney Schaefer & Dr. Keith Lohse Topic Overview: Stroke is responsible for the death of an individual every

SUMMARY: A failed attempt to conduct a systematic review of disparities in racial inclusivity in stroke rehabilitation research: A call to action Group Members: Adeline Beeler & Mikayla McNally Faculty Mentor(s): Dr. Sydney Schaefer & Dr. Keith Lohse Topic Overview: Stroke is responsible for the death of an individual every four minutes in the United States. While all Americans are gravely affected by this statistic, Black Americans are at a significantly increased risk of first stroke incidence when compared to their white counterparts, majorly due to heightened prevalence of stroke risk factors. Not only does race contribute as a factor in stroke incidence, but it also has a considerable impact in the physical impairment of Black Americans following stroke occurrence. While it still remains unclear as to whether or not stroke plays a significant role in stroke rehabilitation efforts, there is a clearly demonstrated need for increased reporting or participation of Black Americans in stroke rehabilitation clinical trials to have the ability to conduct a systematic review of these racial disparities in the near future. In the analysis of 36 stroke rehabilitation-related clinical research studies, 80% of selected trials failed to report any participant racial demographics, with 77.3% of the NIH-funded trials not reporting, as well. Out of the 7 trials that did provide some sort of participant racial information, only 5 successfully provided statistically significant racial data compared to the remainder that simply categorized participants’ race as “white” or “other.” In order to fully investigate the effects of race on stroke rehabilitation, it is imperative that researchers collect and report equally distributed and diverse participant racial data when publishing clinical research. Potential methods of improvement for researchers to include more racially diverse subject populations include more comprehensive and in-depth advertising and recruitment strategies for their studies. Research Methods: In order to produce accurate analyses of the current state of the relationship between race and stroke rehabilitation efforts, 36 stroke rehabilitation clinical research trials from various locations across the United States were identified using the Centralized Open-Access Rehabilitation Database for Stroke (SCOAR). These trials were evaluated in order to extract relevant data, such as number of trial participants, average age of participants, if the research trial was funded by the National Institute of Health (NIH) or not, and any reported participant racial demographic details. Trends across these categories were compared between all trials to determine if any disparities existed in providing data sufficient to support the relationship between varying racial populations and stroke rehabilitation efforts. Future Project Efforts: Future efforts will include the completion of submitting a Point of View/Directions for Research article for publication to offer an opportunity for clinical and basic researchers to examine the discrepancies surrounding racial inclusivity in stroke rehabilitation clinical research. The aim is to improve the ability of clinicians to interpret the literature, translate research studies into practices, and better direct future experiments. Further identification of stroke rehabilitation clinical research trials will be necessary, as well as modifications to current written work content.

ContributorsMcNally, Mikayla (Author) / Beeler, Adeline (Co-author) / Schaefer, Sydney (Thesis director) / Lohse, Keith (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2021-12
161095-Thumbnail Image.png
ContributorsMcNally, Mikayla (Author) / Beeler, Adeline (Co-author) / Schaefer, Sydney (Thesis director) / Lohse, Keith (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2021-12
161096-Thumbnail Image.png
ContributorsMcNally, Mikayla (Author) / Beeler, Adeline (Co-author) / Schaefer, Sydney (Thesis director) / Lohse, Keith (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2021-12