Matching Items (9)
Filtering by

Clear all filters

133535-Thumbnail Image.png
Description
For my honors thesis, I developed a proof of concept alpha prototype of a biomedical device for detection of cerebrospinal fluid leaks during spinal surgery. Cerebrospinal fluid leaks are a consequence of tears in the dura mater of the spinal cord and can result in potentially life-threatening conditions and are

For my honors thesis, I developed a proof of concept alpha prototype of a biomedical device for detection of cerebrospinal fluid leaks during spinal surgery. Cerebrospinal fluid leaks are a consequence of tears in the dura mater of the spinal cord and can result in potentially life-threatening conditions and are overall a large burden not only on the patient but upon the clinical teams managing the patient postoperatively. What I created was an optical sensor that I programmed to be sensitive to detecting green wavelength light. The device would ideally be attached to surgical drain tubing and used in conjunction with fluorescein (a green fluorescent dye) infused lumbar punctures into the spinal canal of patients. As the dye circulates through the spinal cord, any tears in the dura mater would cause the fluorescein to leak out with cerebrospinal fluid into the incision site. This fluid may then be collected by the surgical drain where the sensor may detect the fluorescein, triggering a buzzer response that would notify the patient or the surgeons of an ongoing leak that requires repair. The time I spent on my thesis involved sensor validation to ensure it could differentiate between colors, testing the sensor's color sensitivity by performing a fluorescein aliquot, and running proof of concept testing that could show the sensor can detect fluorescein drain tubing and provide an adequate response. The sensor was able to differentiate between varying concentrations of fluorescein in solution and provided exceptional results in its proof-of-concept testing. Next steps will be to re-run the sensor validation study with different dyes as well as consolidating the device's electrical hardware onto a single circuit board as development of beta and gamma prototypes move forward.
ContributorsAlam, Framarz (Author) / Muthuswamy, Jitendran (Thesis director) / Bohl, Michael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133444-Thumbnail Image.png
Description
Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing Remak fibers using osmium tetroxide staining and imaging with the help of transmission electron microscopy. Using this method, nerves had various electrical stimuli attached to them and were analyzed as such. They were analyzed with a cuff electrode attached, a stimulator attached, and both, with images taken at the center of the nerve and the ends of them. The number and area taken by the Remak fibers were analyzed, along with the g-ratios of the Group A and B fibers. These were analyzed to help deduce the overall health of the fibers along with vacuolization, and mitochondria available. While some important information was gained from this evaluation, further testing has to be done to improve the myelin detection system, along with analyzing the proper and necessary Remak fibers and the role they play. The research tries to thoroughly look at the necessary material and find a way to use it as a guide to further experimentation with electrical stimuli, and notes the differences found within and without various groups, various points of observation, and various stimuli as a whole. Nevertheless, this research allows a strong look into the benefits of transmission electron microscopy and the ability to assess electrical stimulation from these points.
ContributorsNambiar, Karthik (Author) / Muthuswamy, Jitendran (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147999-Thumbnail Image.png
Description

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the anticipation of such events. Communication between patient and provider was assessed as a potential barrier with respect to perceived provider LGBTQIA+ competency. This study applies the minority stress model, considering experiences of everyday stigma and minority stress as a predictor of healthcare utilization among sexual and gender minority students. The findings suggest a small but substantial correlation between minority stress and healthcare use with 23.7% of respondents delaying or not receiving one or more types of care due to fear of stigma or discrimination. Additionally, communication findings indicate a lack of standardization of LGBTQIA+ competent care with experiences varying greatly between respondents.

ContributorsZahn, Jennica (Author) / Davis, Olga (Thesis director) / LeMaster, Benny (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Advancing the understanding and treatment of many neurological disorders can be achieved by improving methods of neuronal detection at increased depth in the mammalian brain. Different cell subtypes cannot be detected using non-invasive techniques beyond 1 mm from cortical surface, in the context of targeting particular cell types in vivo

Advancing the understanding and treatment of many neurological disorders can be achieved by improving methods of neuronal detection at increased depth in the mammalian brain. Different cell subtypes cannot be detected using non-invasive techniques beyond 1 mm from cortical surface, in the context of targeting particular cell types in vivo (Wang, 2012). These limitations in the depth of imaging and targeting are due to optical scattering (Ntziachristos, 2010). In order to overcome these restrictions, longer wavelength fluorescent proteins have been utilized by researchers to see tagged cells at depth. Optical techniques such as two-photon and confocal microscopy have been used in combination with fluorescent proteins to expand depth, but are still limited by the penetration depth of light due to optical scattering (Lee, 2015). This research aims to build on other detection methods, such as the photoacoustic effect and automated fluorescence-guided electrophysiology, to overcome this limitation.

ContributorsAridi, Christina (Author) / Smith, Barbara (Thesis director) / Marschall, Ethan (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

SUMMARY: A failed attempt to conduct a systematic review of disparities in racial inclusivity in stroke rehabilitation research: A call to action Group Members: Adeline Beeler & Mikayla McNally Faculty Mentor(s): Dr. Sydney Schaefer & Dr. Keith Lohse Topic Overview: Stroke is responsible for the death of an individual every

SUMMARY: A failed attempt to conduct a systematic review of disparities in racial inclusivity in stroke rehabilitation research: A call to action Group Members: Adeline Beeler & Mikayla McNally Faculty Mentor(s): Dr. Sydney Schaefer & Dr. Keith Lohse Topic Overview: Stroke is responsible for the death of an individual every four minutes in the United States. While all Americans are gravely affected by this statistic, Black Americans are at a significantly increased risk of first stroke incidence when compared to their white counterparts, majorly due to heightened prevalence of stroke risk factors. Not only does race contribute as a factor in stroke incidence, but it also has a considerable impact in the physical impairment of Black Americans following stroke occurrence. While it still remains unclear as to whether or not stroke plays a significant role in stroke rehabilitation efforts, there is a clearly demonstrated need for increased reporting or participation of Black Americans in stroke rehabilitation clinical trials to have the ability to conduct a systematic review of these racial disparities in the near future. In the analysis of 36 stroke rehabilitation-related clinical research studies, 80% of selected trials failed to report any participant racial demographics, with 77.3% of the NIH-funded trials not reporting, as well. Out of the 7 trials that did provide some sort of participant racial information, only 5 successfully provided statistically significant racial data compared to the remainder that simply categorized participants’ race as “white” or “other.” In order to fully investigate the effects of race on stroke rehabilitation, it is imperative that researchers collect and report equally distributed and diverse participant racial data when publishing clinical research. Potential methods of improvement for researchers to include more racially diverse subject populations include more comprehensive and in-depth advertising and recruitment strategies for their studies. Research Methods: In order to produce accurate analyses of the current state of the relationship between race and stroke rehabilitation efforts, 36 stroke rehabilitation clinical research trials from various locations across the United States were identified using the Centralized Open-Access Rehabilitation Database for Stroke (SCOAR). These trials were evaluated in order to extract relevant data, such as number of trial participants, average age of participants, if the research trial was funded by the National Institute of Health (NIH) or not, and any reported participant racial demographic details. Trends across these categories were compared between all trials to determine if any disparities existed in providing data sufficient to support the relationship between varying racial populations and stroke rehabilitation efforts. Future Project Efforts: Future efforts will include the completion of submitting a Point of View/Directions for Research article for publication to offer an opportunity for clinical and basic researchers to examine the discrepancies surrounding racial inclusivity in stroke rehabilitation clinical research. The aim is to improve the ability of clinicians to interpret the literature, translate research studies into practices, and better direct future experiments. Further identification of stroke rehabilitation clinical research trials will be necessary, as well as modifications to current written work content.

ContributorsMcNally, Mikayla (Author) / Beeler, Adeline (Co-author) / Schaefer, Sydney (Thesis director) / Lohse, Keith (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2021-12
161095-Thumbnail Image.png
ContributorsMcNally, Mikayla (Author) / Beeler, Adeline (Co-author) / Schaefer, Sydney (Thesis director) / Lohse, Keith (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2021-12
161096-Thumbnail Image.png
ContributorsMcNally, Mikayla (Author) / Beeler, Adeline (Co-author) / Schaefer, Sydney (Thesis director) / Lohse, Keith (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2021-12
Description
Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS to be an effective treatment in the effects of PD but the mechanism to validating this phenomenon is poorly understood.

Deep Brain Stimulation (DBS) is a stimulating therapy currently used to treat the motor disabilities that occur as a result of Parkinson’s disease (PD). Previous literature has proven the DBS to be an effective treatment in the effects of PD but the mechanism to validating this phenomenon is poorly understood. In this study, an evaluation of the DBS mechanism was analyzed in patients who received both contralateral and ipsilateral stimulation by the DBS electrode in relation to the recording microelectrode. I hypothesize that the data recorded from the neural tissue of the Parkinson’s patients will exhibit increased electromagnetic field (EMF) fall-off as spatial distance increases among the DBS lead and the microelectrode within the subthalamic nucleus (STN) as a result of the interaction between the EMF exuded by DBS and the neural tissue. Results depicted that EMF fall-off values increased with distance, observable upon comparing ipsilateral and contralateral patient data. The resulting analysis supported this phenomenon evidenced by the production of greater peak voltage amplitudes in ipsilateral patient stimulation with respect to time when compared to contralateral patient stimulation. The understanding of EMF strength and the associated trends among this data are vital to the progression and continued development of the DBS field relative to future research.
ContributorsKiraly, Alexis B (Author) / Greger, Bradley (Thesis director) / Muthuswamy, Jitendran (Committee member) / Harrington Bioengineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
165136-Thumbnail Image.png
Description
Breast cancer can be imaged at greater depths using photoacoustic imaging to differentiate between cancerous and non-cancerous tissue. Current photoacoustic modalities struggle to display images in real-time because of the required image reconstruction. In this work, we aim to create a real-time photoacoustic imaging system where the photoacoustic effect is

Breast cancer can be imaged at greater depths using photoacoustic imaging to differentiate between cancerous and non-cancerous tissue. Current photoacoustic modalities struggle to display images in real-time because of the required image reconstruction. In this work, we aim to create a real-time photoacoustic imaging system where the photoacoustic effect is detected through changes in index of refraction. To reach this aim, two methods are applied to visualize the acoustic waves including Schlieren optics and differential interference contrast microscopy. This combined approach provides a new tool for the widespread application in clinical settings.
ContributorsSmetanick, Derek (Author) / Burgett, Joshua (Co-author) / Smith, Barbara (Thesis director) / Muthuswamy, Jitendran (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor)
Created2022-05