Matching Items (2)
156522-Thumbnail Image.png
Description
One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels

One out of ten women has a difficult time getting or staying pregnant in the United States. Recent studies have identified aging as one of the key factors attributed to a decline in female reproductive health. Existing fertility diagnostic methods do not allow for the non-invasive monitoring of hormone levels across time. In recent years, olfactory sensing has emerged as a promising diagnostic tool for its potential for real-time, non-invasive monitoring. This technology has been proven promising in the areas of oncology, diabetes, and neurological disorders. Little work, however, has addressed the use of olfactory sensing with respect to female fertility. In this work, we perform a study on ten healthy female subjects to determine the volatile signature in biological samples across 28 days, correlating to fertility hormones. Volatile organic compounds (VOCs) present in the air above the biological sample, or headspace, were collected by solid phase microextraction (SPME), using a 50/30 µm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coated fiber. Samples were analyzed, using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A regression model was used to identify key analytes, corresponding to the fertility hormones estrogen and progesterone. Results indicate shifts in volatile signatures in biological samples across the 28 days, relevant to hormonal changes. Further work includes evaluating metabolic changes in volatile hormone expression as an early indicator of declining fertility, so women may one day be able to monitor their reproductive health in real-time as they age.
ContributorsOng, Stephanie (Author) / Smith, Barbara (Thesis advisor) / Bean, Heather (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
134307-Thumbnail Image.png
Description
Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from

Cystic Fibrosis (CF) is a genetic disorder that disrupts the hydration of mucous of the lungs, which promotes opportunistic bacterial infections that begin in the affected person’s childhood, and persist into adulthood. One of the bacteria that infect the CF lung is Pseudomonas aeruginosa. This gram-negative bacterium is acquired from the environment of the CF lung, changing the expression of phenotypes over the course of the infection. As P. aeruginosa infections become chronic, some phenotype changes are known to be linked with negative patient outcomes. An important exoproduct phenotype is rhamnolipid production, which is a glycolipid that P. aeruginosa produces as a surfactant for surface-mediated travel. Over time, the expression of this phenotype decreases in expression in the CF lung.
The objective of this investigation is to evaluate how environmental changes that are related to the growth environment in the CF lung alters rhamnolipid production. Thirty-five P. aeruginosa isolates from Dartmouth College and Seattle Children’s Hospital were selected to observe the impact of temperature, presence of Staphylococcus aureus metabolites, and oxygen availability on rhamnolipid production. It was found that the rhamnolipid production significantly decreased for 30C versus 37C, but not at 40C. The addition of S. aureus spent media, in any of the tested conditions, did not influence rhamnolipid production. Finally, the change in oxygen concentration from normoxia to hypoxia significantly reduced rhamnolipid production. These results were compared to swarming assay data to understand how changes in rhamnolipid production impact surface-mediated motility.
ContributorsKiermayr, Jonathan Patrick (Author) / Bean, Heather (Thesis director) / Misra, Rajeev (Committee member) / Haydel, Shelley (Committee member) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05