Matching Items (4)
Filtering by

Clear all filters

151067-Thumbnail Image.png
Description
Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is

Aqueous solutions of temperature-responsive copolymers based on N-isopropylacrylamide (NIPAAm) hold promise for medical applications because they can be delivered as liquids and quickly form gels in the body without organic solvents or chemical reaction. However, their gelation is often followed by phase-separation and shrinking. Gel shrinking and water loss is a major limitation to using NIPAAm-based gels for nearly any biomedical application. In this work, a graft copolymer design was used to synthesize polymers which combine the convenient injectability of poly(NIPAAm) with gel water content controlled by hydrophilic side-chain grafts based on Jeffamine® M-1000 acrylamide (JAAm). The first segment of this work describes the synthesis and characterization of poly(NIPAAm-co-JAAm) copolymers which demonstrates controlled swelling that is nearly independent of LCST. The graft copolymer design was then used to produce a degradable antimicrobial-eluting gel for prevention of prosthetic joint infection. The resorbable graft copolymer gels were shown to have three unique characteristics which demonstrate their suitability for this application. First, antimicrobial release is sustained and complete within 1 week. Second, the gels behave like viscoelastic fluids, enabling complete surface coverage of an implant without disrupting fixation or movement. Finally, the gels degrade rapidly within 1-6 weeks, which may enable their use in interfaces where bone healing takes place. Graft copolymer hydrogels were also developed which undergo Michael addition in situ with poly(ethylene glycol) diacrylate to form elastic gels for endovascular embolization of saccular aneurysms. Inclusion of JAAm grafts led to weaker physical crosslinking and faster, more complete chemical crosslinking. JAAm grafts prolonged the delivery window of the system from 30 seconds to 220 seconds, provided improved gel swelling, and resulted in stronger, more elastic gels within 30 minutes after delivery.
ContributorsOverstreet, Derek (Author) / Caplan, Michael (Thesis advisor) / Massia, Stephen (Committee member) / Mclaren, Alexander (Committee member) / Vernon, Brent (Committee member) / McLemore, Ryan (Committee member) / Arizona State University (Publisher)
Created2012
137550-Thumbnail Image.png
Description
This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which

This report provides information concerning qualities of methylcellulose and how those properties affect further experimentation within the biomedical world. Utilizing the compound’s biocompatibility many issues, ranging from surgical to cosmetic, can be solved. As of recent, studies indicate, methylcellulose has been used as a physically cross-linked gel, which cannot sustain a solid form within the body. Therefore, this report will ultimately explore the means of creating a non-degradable, injectable, chemically cross-linking methylcellulose- based hydrogel. Methylcellulose will be evaluated and altered in experiments conducted within this report and a chemical cross-linker, developed from Jeffamine ED 2003 (O,O′-Bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol), will be created. Experimentation with these elements is outlined here, and will ultimately prompt future revisions and analysis.
ContributorsBundalo, Zoran Luka (Author) / Vernon, Brent (Thesis director) / LaBelle, Jeffrey (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137683-Thumbnail Image.png
Description
Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we

Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we report on the development of temperature responsive copolymers, which are deliverable through a microcatheter at body temperature and then rapidly cure to form a highly elastic hydrogel. To our knowledge, this is the first physical-and chemical-crosslinked hydrogel capable of rapid crosslinking at temperatures above the gel transition temperature. The polymer system, poly(N-isopropylacrylamide-co-cysteamine-co-Jeffamine® M-1000 acrylamide) and poly(ethylene glycol) diacrylate, was evaluated in wide-neck aneurysm flow models to evaluate the stability of the hydrogels. Investigation of this polymer system indicates that the Jeffamine® M-1000 causes the gels to retain water, resulting in gels that are initially weak and viscous, but become stronger and more elastic after chemical crosslinking.
ContributorsLee, Elizabeth Jean (Author) / Vernon, Brent (Thesis director) / Brennecka, Celeste (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
132760-Thumbnail Image.png
Description
Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or

Advancements in healthcare and the emergence of an aging population has led to an increase in the number of prosthetic joint procedures in the United States. According to Healthcare Cost and Utilization Project, 660,876 and 348,970 total hip and knee arthroplasties were performed in 2014[1].The percentage of total hip or knee procedures that are revised due to an infection is 1.23% and 1.21% respectively[3], [4]. Although the percent of infections may be small, an infection can have a tremendous burden on the patient and healthcare system. It is expected that prosthetic joint infections (PJIs) will cost the healthcare system an estimated $1.62 billion by 2020[5]. PJIs are often difficult to treat due to the formation of biofilm at the site of the infection. A large majority of PJIs are the result of a bacterial biofilm, but around 1% of PJIs are due to fungal infections[3]. The current method of treatment is to surgically remove all infected tissue at the site of infection through a process called debridement and then insert a medicated bone cement spacer[7], [10]–[12]. One such medication that is loaded into the bone cement is caspofungin, a member of the echinocandin class of compounds that inhibit the synthesis of 1,3-β-D-glucan which is a crucial element of the cell wall of the target fungi[13]–[15]. For the studies reported herein, the caspofungin-loaded bone cement samples were made at 5 dosage strengths according to standard operating room practices. The elution of the drug was analyzed using ultraviolet spectrophotometry. The elution profiles were analyzed for 19 days consecutively, during which the 70 mg, 1 g, and 5 g dosage groups showed a prolonged, sustained release of the caspofungin. The 70 mg and 1 g dosage cumulative mass release profiles were not statistically significant, but it is unlikely that the difference would not have a clinical significance especially in the treatment of a fungal biofilm infection. The determination of the elution profile for caspofungin from loaded-bone cement can provide clinicians with a basis for how the drug will release into the infected joint.
ContributorsMoore, Rex C. (Author) / Vernon, Brent (Thesis director) / Overstreet, Derek (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05