Matching Items (26)
Filtering by

Clear all filters

152140-Thumbnail Image.png
Description
Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering

Specificity and affinity towards a given ligand/epitope limit target-specific delivery. Companies can spend between $500 million to $2 billion attempting to discover a new drug or therapy; a significant portion of this expense funds high-throughput screening to find the most successful target-specific compound available. A more recent addition to discovering highly specific targets is the application of phage display utilizing single chain variable fragment antibodies (scFv). The aim of this research was to employ phage display to identify pathologies related to traumatic brain injury (TBI), particularly astrogliosis. A unique biopanning method against viable astrocyte cultures activated with TGF-β achieved this aim. Four scFv clones of interest showed varying relative affinities toward astrocytes. One of those four showed the ability to identify reactive astroctyes over basal astrocytes through max signal readings, while another showed a statistical significance in max signal reading toward basal astrocytes. Future studies will include further affinity characterization assays. This work contributes to the development of targeting therapeutics and diagnostics for TBI.
ContributorsMarsh, William (Author) / Stabenfeldt, Sarah (Thesis advisor) / Caplan, Michael (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152809-Thumbnail Image.png
Description
Cell-cell interactions in a microenvironment under stress conditions play a critical role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in carcinogenesis, which induces selective pressure in this process. Understanding the role of intercellular communications and cellular adaptation to hypoxia can help discover new cancer biosignatures and more

Cell-cell interactions in a microenvironment under stress conditions play a critical role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in carcinogenesis, which induces selective pressure in this process. Understanding the role of intercellular communications and cellular adaptation to hypoxia can help discover new cancer biosignatures and more effective diagnostic and therapeutic strategies. This dissertation presents a study on transcriptomic and metabolic profiling of pre-malignant progression of Barrett's esophagus. It encompasses two methodology developments and experimental findings of two related studies. To integrate phenotype and genotype measurements, a minimally invasive method was developed for selectively retrieving single adherent cells from cell cultures. Selected single cells can be harvested by a combination of mechanical force and biochemical treatment after phenotype measurements and used for end-point assays. Furthermore, a method was developed for analyzing expression levels of ten genes in individual mammalian cells with high sensitivity and reproducibility without the need of pre-amplifying cDNA. It is inexpensive and compatible with most of commercially available RT-qPCR systems, which warrants a wide applicability of the method to gene expression analysis in single cells. In the first study, the effect of intercellular interactions was investigated between normal esophageal epithelial and dysplastic Barrett's esophagus cells on gene expression levels and cellular functions. As a result, gene expression levels in dysplastic cells were found to be affected to a significantly larger extent than in the normal esophageal epithelial cells. These differentially expressed genes are enriched in cellular movement, TGFβ and EGF signaling networks. Heterotypic interactions between normal and dysplastic cells can change cellular motility and inhibit proliferation in both normal and dysplastic cells. In the second study, alterations in gene transcription levels and metabolic phenotypes between hypoxia-adapted cells and age-matched normoxic controls representing four different stages of pre-malignant progression in Barrett's esophagus were investigated. Through differential gene expression analysis and mitochondrial membrane potential measurements, evidence of clonal evolution induced by hypoxia selection pressure in metaplastic and high-grade dysplastic cells was found. These discoveries on cell-cell interactions and hypoxia adaptations provide a deeper insight into the dynamic evolutionary process in pre-malignant progression of Barrett's esophagus.
ContributorsZeng, Jia (Author) / Meldrum, Deirdre R (Thesis advisor) / Kelbauskas, Laimonas (Committee member) / Barrett, Michael T (Committee member) / Bussey, Kimberly J (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2014
152955-Thumbnail Image.png
Description
The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in

The objective of this small animal pre-clinical research project was to study quantitatively the long-term micro- and macro- structural brain changes employing multiparametric MRI (Magnetic Resonance Imaging) techniques. Two separate projects make up the basis of this thesis. The first part focuses on obtaining prognostic information at early stages in the case of Traumatic Brain Injury (TBI) in rat animal model using imaging data acquired at 24-hours and 7-days post injury. The obtained parametric T2 and diffusion values from DTI (Diffusion Tensor Imaging) showed significant deviations in the signal intensities from the control and were potentially useful as an early indicator of the severity of post-traumatic injury damage. DTI was especially critical in distinguishing between the cytotoxic and vasogenic edema and in identification of injury regions resolving to normal control values by day-7. These results indicate the potential of quantitative MRI as a clinical marker in predicting prognosis following TBI. The second part of this thesis focuses on studying the effect of novel therapeutic strategies employing dendritic cell (DC) based vaccinations in mice glioma model. The treatment cohorts included comparing a single dose of Azacytidine drug vs. mice getting three doses of drug per week. Another cohort was used as an untreated control group. The MRI results did not show any significant changes in between the two treated cohorts with no reduction in tumor volumes compared to the control group. The future studies would be focused on issues regarding the optimal dose for the application of DC vaccine. Together, the quantitative MRI plays an important role in the prognosis and diagnosis of the above mentioned pathologies, providing essential information about the anatomical location, micro-structural tissue environment, lesion volume and treatment response.
ContributorsAnnaldas, Bharat (Author) / Kodibagkar, Vikram (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Bhardwaj, Ratan (Committee member) / Arizona State University (Publisher)
Created2014
153319-Thumbnail Image.png
Description
Modern medical conditions, including cancer, traumatic brain injury, and cardiovascular disease, have elicited the need for cell therapies. The ability to non-invasively track cells in vivo in order to evaluate these therapies and explore cell dynamics is necessary. Magnetic Resonance Imaging provides a platform to track cells as a non-invasive

Modern medical conditions, including cancer, traumatic brain injury, and cardiovascular disease, have elicited the need for cell therapies. The ability to non-invasively track cells in vivo in order to evaluate these therapies and explore cell dynamics is necessary. Magnetic Resonance Imaging provides a platform to track cells as a non-invasive modality with superior resolution and soft tissue contrast. A new methodology for cellular labeling and imaging uses Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/ detection) nanoprobes. While Gadolinium chelates and super paramagnetic iron oxide-based particles have historically provided contrast enhancement in MRI, newer agents offer additional advantages. A technique using 1H MRI in conjunction with an oxygen reporter molecule is one tool capable of providing these benefits, and can be used in neural progenitor cell and cancer cell studies. Proton Imaging of Siloxanes to Map Tissue Oxygenation Levels (PISTOL) provides the ability to track the polydimethylsiloxane (PDMS) labeled cells utilizing the duality of the nanoemulsions. 1H MRI based labeling of neural stem cells and cancer cells was successfully demonstrated. Additionally, fluorescence labeling of the nanoprobes provided validation of the MRI data and could prove useful for quick in vivo verification and ex vivo validation for future studies.
ContributorsCusick, Alex (Author) / Kodibagkar, Vikram D. (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Kleim, Jeff (Committee member) / Arizona State University (Publisher)
Created2014
153178-Thumbnail Image.png
Description
Magnetic Resonance Imaging (MRI) is an efficient non-invasive imaging tool widely used in medical field to produce high quality images. The MRI signal is detected with specifically developed radio frequency (RF) systems or "coils". There are several key parameters to evaluate the performance of RF coils: signal-to-noise ratio (SNR), homogeneity,

Magnetic Resonance Imaging (MRI) is an efficient non-invasive imaging tool widely used in medical field to produce high quality images. The MRI signal is detected with specifically developed radio frequency (RF) systems or "coils". There are several key parameters to evaluate the performance of RF coils: signal-to-noise ratio (SNR), homogeneity, quality factor (Q factor), sensitivity, etc. The choice of coil size and configuration depends on the object to be imaged. While surface coils have better sensitivity, volume coils are often employed to image a larger region of interest (ROI) as they display better spatial homogeneity. For the cell labeling and imaging studies using the newly developed siloxane based nanoemulsions as 1H MR reporter probes, the first step is to determine the sensitivity of signal detection under controlled conditions in vitro. In this thesis, a novel designed 7 Tesla RF volume coil was designed and tested for detection of small quantities of siloxane probe as well as for imaging of labeled tumor spheroid. The procedure contains PCB circuit design, RF probe design, test and subsequent modification. In this report, both theory and design methodology will be discussed.
ContributorsWang, Haiqing (Author) / Kodibagkar, Vikram (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Sadleir, Rosalind (Committee member) / Arizona State University (Publisher)
Created2014
153161-Thumbnail Image.png
Description
Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or

Alzheimer's disease (AD) is the most common form of dementia leading to cognitive dysfunction and memory loss as well as emotional and behavioral disorders. It is the 6th leading cause of death in United States, and the only one among top 10 death causes that cannot be prevented, cured or slowed. An estimated 5.4 million Americans live with AD, and this number is expected to triple by year 2050 as the baby boomers age. The cost of care for AD in the US is about $200 billion each year. Unfortunately, in addition to the lack of an effective treatment or AD, there is also a lack of an effective diagnosis, particularly an early diagnosis which would enable treatment to begin before significant neuronal damage has occurred.

Increasing evidence implicates soluble oligomeric forms of beta-amyloid and tau in the onset and progression of AD. While many studies have focused on beta-amyloid, soluble oligomeric tau species may also play an important role in AD pathogenesis. Antibodies that selectively identify and target specific oligomeric tau variants would be valuable tools for both diagnostic and therapeutic applications and also to study the etiology of AD and other neurodegenerative diseases.

Recombinant human tau (rhTau) in monomeric, dimeric, trimeric and fibrillar forms were synthesized and purified to perform LDH assay on human neuroblastoma cells, so that trimeric but not monomeric or dimeric rhTau was identified as extracellularly neurotoxic to neuronal cells. A novel biopanning protocol was designed based on phage display technique and atomic force microscopy (AFM), and used to isolate single chain antibody variable domain fragments (scFvs) that selectively recognize the toxic tau oligomers. These scFvs selectively bind tau variants in brain tissue of human AD patients and AD-related tau transgenic rodent models and have potential value as early diagnostic biomarkers for AD and as potential therapeutics to selectively target toxic tau aggregates.
ContributorsTian, Huilai (Author) / Sierks, Michael R (Thesis advisor) / Dai, Lenore (Committee member) / Tillery, Stephen H (Committee member) / Nielsen, David R (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2014
150927-Thumbnail Image.png
Description
Due to heterogeneity at the cellular level, single cell analysis (SCA) has become a necessity to study cellomics for the early detection of diseases like cancer. Development of single cell manipulation systems is very critical for performing SCA. In this thesis, electrorotation (ROT) chips to trap and rotate single cells

Due to heterogeneity at the cellular level, single cell analysis (SCA) has become a necessity to study cellomics for the early detection of diseases like cancer. Development of single cell manipulation systems is very critical for performing SCA. In this thesis, electrorotation (ROT) chips to trap and rotate single cells using electrokinetic forces have been developed. The ROT chip mainly consists of a set of closely spaced metal electrodes (60µm interspacing between opposite electrodes) that forms a closed electric field cage (electrocage) when driven with high frequency AC voltages. Cells were flowed through a microchannel to the electrocage where they could be precisely trapped, levitated and rotated in 3-D along the axis of interest. The dielectrophoresis based ROT chip design and relevant electrokinetic effects have been simulated using COMSOL 3.4 to optimize the design parameters. Also, various semiconductor technology fabrication process steps have been developed and optimized for better yield and repeatability in the manufacture of the ROT chip. The ROT chip thus fabricated was used to characterize rotation of single cells with respect to the control parameters namely excitation voltage, frequency and cell line. The longevity of cell rotation under electric fields has been probed. Also, the Joule heating inside the ROT chip due to applied voltage has been characterized to know the thermal stress on the cells. The major advantages of the ROT chip developed are precise electrorotation of cells, simple design and straight forward fabrication process.
ContributorsSoundappa Elango, Iniyan (Author) / Meldrum, Deirdre R (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Johnson, Roger H (Committee member) / Arizona State University (Publisher)
Created2012
157420-Thumbnail Image.png
Description
The research question explored in this thesis is how CRISPR mediated editing is influenced by artificially opened chromatin in cells. Closed chromatin poses a barrier to Cas9 binding and editing at target genes. Synthetic pioneer factors (PFs) are a promising new approach to artificially open condensed heterochromatin allowing greater access

The research question explored in this thesis is how CRISPR mediated editing is influenced by artificially opened chromatin in cells. Closed chromatin poses a barrier to Cas9 binding and editing at target genes. Synthetic pioneer factors (PFs) are a promising new approach to artificially open condensed heterochromatin allowing greater access of target DNA to Cas9. The Haynes lab has constructed fusions of enzymatic chromatin-modifying domains designed to remodel chromatin and increase Cas9 editing efficiency. With a library of PFs available, this research focuses on analyzing the behavior of Cas9 in chromatin that has been artificially opened by PFs. The types and frequency of INDELs (insertions & deletions) were determined after non-homologous end joining (NHEJ) in PF and Cas9-treated cells using quantitative Sanger sequencing and Synthego’s ICE software. Furthermore, NOME-seq analysis was carried out to map nucleosome position in PF and Cas9 treated cells. Although this experiment was unsuccessful, the heat map generated with data obtained from Synthego ICE predicts a possible presence of nucleosome in the vicinity suggesting that perhaps a fully open chromatin state was not achieved. Linear Regression analysis with certain assumptions confirms that with the increase in distance downstream of cut-site, the editing frequency decreases exponentially. Nevertheless, further experimental work should be carried out to investigate this hypothesis.
ContributorsHamna, Syeda Fatima (Author) / Haynes, Karmella A (Thesis advisor) / Stabenfeldt, Sarah (Thesis advisor) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2019
Description
Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential

Myocardial infarction (MI) remains the leading cause of mortality and morbidity in the U.S., accounting for nearly 140,000 deaths per year. Heart transplantation and implantation of mechanical assist devices are the options of last resort for intractable heart failure, but these are limited by lack of organ donors and potential surgical complications. In this regard, there is an urgent need for developing new effective therapeutic strategies to induce regeneration and restore the loss contractility of infarcted myocardium. Over the past decades, regenerative medicine has emerged as a promising strategy to develop scaffold-free cell therapies and scaffold-based cardiac patches as potential approaches for MI treatment. Despite the progress, there are still critical shortcomings associated with these approaches regarding low cell retention, lack of global cardiomyocytes (CMs) synchronicity, as well as poor maturation and engraftment of the transplanted cells within the native myocardium. The overarching objective of this dissertation was to develop two classes of nanoengineered cardiac patches and scaffold-free microtissues with superior electrical, structural, and biological characteristics to address the limitations of previously developed tissue models. An integrated strategy, based on micro- and nanoscale technologies, was utilized to fabricate the proposed tissue models using functionalized gold nanomaterials (GNMs). Furthermore, comprehensive mechanistic studies were carried out to assess the influence of conductive GNMs on the electrophysiology and maturity of the engineered cardiac tissues. Specifically, the role of mechanical stiffness and nano-scale topographies of the scaffold, due to the incorporation of GNMs, on cardiac cells phenotype, contractility, and excitability were dissected from the scaffold’s electrical conductivity. In addition, the influence of GNMs on conduction velocity of CMs was investigated in both coupled and uncoupled gap junctions using microelectrode array technology. Overall, the key contributions of this work were to generate new classes of electrically conductive cardiac patches and scaffold-free microtissues and to mechanistically investigate the influence of conductive GNMs on maturation and electrophysiology of the engineered tissues.
ContributorsNavaei, Ali (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Migrino, Raymond Q. (Committee member) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2018
156746-Thumbnail Image.png
Description
Achieving effective drug concentrations within the central nervous system (CNS) remains one of the greatest challenges for the treatment of brain tumors. The presence of the blood-brain barrier and blood-spinal cord barrier severely restricts the blood-to-CNS entry of nearly all systemically administered therapeutics, often leading to the development of peripheral

Achieving effective drug concentrations within the central nervous system (CNS) remains one of the greatest challenges for the treatment of brain tumors. The presence of the blood-brain barrier and blood-spinal cord barrier severely restricts the blood-to-CNS entry of nearly all systemically administered therapeutics, often leading to the development of peripheral toxicities before a treatment benefit is observed. To circumvent systemic barriers, intrathecal (IT) injection of therapeutics directly into the cerebrospinal fluid (CSF) surrounding the brain and spinal cord has been used as an alternative administration route; however, its widespread translation to the clinic has been hindered by poor drug pharmacokinetics (PK), including rapid clearance, inadequate distribution, as well as toxicity. One strategy to overcome the limitations of free drug PK and improve drug efficacy is to encapsulate drug within nanoparticles (NP), which solubilize hydrophobic molecules for sustained release in physiological environments. In this thesis, we will develop NP delivery strategies for brain tumor therapy in two model systems: glioblastoma (GBM), the most common and deadly malignant primary brain tumor, and medulloblastoma, the most common pediatric brain tumor. In the first research chapter, we developed 120 nm poly(lactic acid-co-glycolic acid) NPs encapsulating the chemotherapy, camptothecin, for intravenous delivery to GBM. NP encapsulation of camptothecin was shown to reduce the drug’s toxicity and enable effective delivery to orthotopic GBM. To build off the success of intravenous NP, the second research chapter explored the utility of 100 nm PEGylated NPs for use with IT administration. Using in vivo imaging and ex vivo tissue slices, we found the NPs were rapidly transported by the convective forces of the CSF along the entire neuraxis and were retained for over 3 weeks. Based on their wide spread delivery and prolonged circulation, we examine the ability of the NPs to localize with tumor lesions in a leptomeningeal metastasis (LM) model of medulloblastoma. NPs administered to LM bearing mice were shown to penetrate into LM mets seeded within the meninges around the brain. These data show the potential to translate our success with intravenous NPs for GBM to improve IT chemotherapy delivery to LM.
ContributorsHouseholder, Kyle Thomas (Author) / Sirianni, Rachael W. (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Caplan, Michael (Committee member) / Wechsler-Reya, Robert (Committee member) / Arizona State University (Publisher)
Created2018