Matching Items (7)
Filtering by

Clear all filters

156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156976-Thumbnail Image.png
Description
In the past half century, low-power wireless signals from portable radar sensors, initially continuous-wave (CW) radars and more recently ultra-wideband (UWB) radar systems, have been successfully used to detect physiological movements of stationary human beings.

The thesis starts with a careful review of existing signal processing techniques and state

In the past half century, low-power wireless signals from portable radar sensors, initially continuous-wave (CW) radars and more recently ultra-wideband (UWB) radar systems, have been successfully used to detect physiological movements of stationary human beings.

The thesis starts with a careful review of existing signal processing techniques and state of the art methods possible for vital signs monitoring using UWB impulse systems. Then an in-depth analysis of various approaches is presented.

Robust heart-rate monitoring methods are proposed based on a novel result: spectrally the fundamental heartbeat frequency is respiration-interference-limited while its higher-order harmonics are noise-limited. The higher-order statistics related to heartbeat can be a robust indication when the fundamental heartbeat is masked by the strong lower-order harmonics of respiration or when phase calibration is not accurate if phase-based method is used. Analytical spectral analysis is performed to validate that the higher-order harmonics of heartbeat is almost respiration-interference free. Extensive experiments have been conducted to justify an adaptive heart-rate monitoring algorithm. The scenarios of interest are, 1) single subject, 2) multiple subjects at different ranges, 3) multiple subjects at same range, and 4) through wall monitoring.

A remote sensing radar system implemented using the proposed adaptive heart-rate estimation algorithm is compared to the competing remote sensing technology, a remote imaging photoplethysmography system, showing promising results.

State of the art methods for vital signs monitoring are fundamentally related to process the phase variation due to vital signs motions. Their performance are determined by a phase calibration procedure. Existing methods fail to consider the time-varying nature of phase noise. There is no prior knowledge about which of the corrupted complex signals, in-phase component (I) and quadrature component (Q), need to be corrected. A precise phase calibration routine is proposed based on the respiration pattern. The I/Q samples from every breath are more likely to experience similar motion noise and therefore they should be corrected independently. High slow-time sampling rate is used to ensure phase calibration accuracy. Occasionally, a 180-degree phase shift error occurs after the initial calibration step and should be corrected as well. All phase trajectories in the I/Q plot are only allowed in certain angular spaces. This precise phase calibration routine is validated through computer simulations incorporating a time-varying phase noise model, controlled mechanic system, and human subject experiment.
ContributorsRong, Yu (Author) / Bliss, Daniel W (Thesis advisor) / Richmond, Christ D (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Alkhateeb, Ahmed (Committee member) / Arizona State University (Publisher)
Created2018
136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
153630-Thumbnail Image.png
Description
Tracking targets in the presence of clutter is inevitable, and presents many challenges. Additionally, rapid, drastic changes in clutter density between different environments or scenarios can make it even more difficult for tracking algorithms to adapt. A novel approach to target tracking in such dynamic clutter environments is proposed using

Tracking targets in the presence of clutter is inevitable, and presents many challenges. Additionally, rapid, drastic changes in clutter density between different environments or scenarios can make it even more difficult for tracking algorithms to adapt. A novel approach to target tracking in such dynamic clutter environments is proposed using a particle filter (PF) integrated with Interacting Multiple Models (IMMs) to compensate and adapt to the transition between different clutter densities. This model was implemented for the case of a monostatic sensor tracking a single target moving with constant velocity along a two-dimensional trajectory, which crossed between regions of drastically different clutter densities. Multiple combinations of clutter density transitions were considered, using up to three different clutter densities. It was shown that the integrated IMM PF algorithm outperforms traditional approaches such as the PF in terms of tracking results and performance. The minimal additional computational expense of including the IMM more than warrants the benefits of having it supplement and amplify the advantages of the PF.
ContributorsDutson, Karl (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Bliss, Daniel W (Committee member) / Arizona State University (Publisher)
Created2015
171768-Thumbnail Image.png
Description
Object tracking refers to the problem of estimating a moving object's time-varying parameters that are indirectly observed in measurements at each time step. Increased noise and clutter in the measurements reduce estimation accuracy as they increase the uncertainty of tracking in the field of view. Whereas tracking is performed using

Object tracking refers to the problem of estimating a moving object's time-varying parameters that are indirectly observed in measurements at each time step. Increased noise and clutter in the measurements reduce estimation accuracy as they increase the uncertainty of tracking in the field of view. Whereas tracking is performed using a Bayesian filter, a Bayesian smoother can be utilized to refine parameter state estimations that occurred before the current time. In practice, smoothing can be widely used to improve state estimation or correct data association errors, and it can lead to significantly better estimation performance as it reduces the impact of noise and clutter. In this work, a single object tracking method is proposed based on integrating Kalman filtering and smoothing with thresholding to remove unreliable measurements. As the new method is effective when the noise and clutter in the measurements are high, the main goal is to find these measurements using a moving average filter and a thresholding method to improve estimation. Thus, the proposed method is designed to reduce estimation errors that result from measurements corrupted with high noise and clutter. Simulations are provided to demonstrate the improved performance of the new method when compared to smoothing without thresholding. The root-mean-square error in estimating the object state parameters is shown to be especially reduced under high noise conditions.
ContributorsSeo, Yongho (Author) / Papandreaou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel W (Committee member) / Chakrabarti, Chaitali (Committee member) / Moraffah, Bahman (Committee member) / Arizona State University (Publisher)
Created2022
157817-Thumbnail Image.png
Description
An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for

An analysis is presented of a network of distributed receivers encumbered by strong in-band interference. The structure of information present across such receivers and how they might collaborate to recover a signal of interest is studied. Unstructured (random coding) and structured (lattice coding) strategies are studied towards this purpose for a certain adaptable system model. Asymptotic performances of these strategies and algorithms to compute them are developed. A jointly-compressed lattice code with proper configuration performs best of all strategies investigated.
ContributorsChapman, Christian Douglas (Author) / Bliss, Daniel W (Thesis advisor) / Richmond, Christ D (Committee member) / Kosut, Oliver (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2019
158175-Thumbnail Image.png
Description
Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA) is employed to protect patients and provide time for surgeons

Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA) is employed to protect patients and provide time for surgeons to complete repairs on the basis that reducing body temperature suppresses the metabolic rate. Supplementary surgical techniques can be employed to reinforce the brain's protection and increase the duration circulation can be suspended. Even then, protection is not completely guaranteed though. A medical condition that can arise early in recovery is postoperative delirium, which is correlated with poor long term outcome. This study develops a methodology to intraoperatively monitor neurophysiology through electroencephalography (EEG) and anticipate postoperative delirium. The earliest opportunity to detect occurrences of complications through EEG is immediately following DHCA during warming. The first observable electrophysiological activity after being completely suppressed is a phenomenon known as burst suppression, which is related to the brain's metabolic state and recovery of nominal neurological function. A metric termed burst suppression duty cycle (BSDC) is developed to characterize the changing electrophysiological dynamics. Predictions of postoperative delirium incidences are made by identifying deviations in the way these dynamics evolve. Sixteen cases are examined in this study. Accurate predictions can be made, where on average 89.74% of cases are correctly classified when burst suppression concludes and 78.10% when burst suppression begins. The best case receiver operating characteristic curve has an area under its convex hull of 0.8988, whereas the worst case area under the hull is 0.7889. These results demonstrate the feasibility of monitoring BSDC to anticipate postoperative delirium during burst suppression. They also motivate a further analysis on identifying footprints of causal mechanisms of neural injury within BSDC. Being able to raise warning signs of postoperative delirium early provides an opportunity to intervene and potentially avert neurological complications. Doing so would improve the success rate and quality of life after surgery.
ContributorsMa, Owen (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Kosut, Oliver (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2020