Matching Items (40)
Filtering by

Clear all filters

135546-Thumbnail Image.png
Description
Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds

Traumatic brain injury (TBI) may result in numerous pathologies that cannot currently be mitigated by clinical interventions. Stem cell therapies are widely researched to address TBI-related pathologies with limited success in pre-clinical models due to limitations in transplant survival rates. To address this issue, the use of tissue engineered scaffolds as a delivery mechanism has been explored to improve survival and engraftment rates. Previous work with hyaluronic acid \u2014 laminin (HA-Lm) gels found high viability and engraftment rates of mouse fetal derived neural progenitor/stem cells (NPSCs) cultured on the gel. Furthermore, NPSCs exposed to the HA-Lm gels exhibit increased expression of CXCR4, a critical surface receptor that promotes cell migration. We hypothesized that culturing hNPCs on the HA-Lm gel would increase CXCR4 expression, and thus enhance their ability to migrate into sites of tissue damage. In order to test this hypothesis, we designed gel scaffolds with mechanical properties that were optimized to match that of the natural extracellular matrix. A live/dead assay showed that hNPCs preferred the gel with this optimized formulation, compared to a stiffer gel that was used in the CXCR4 expression experiment. We found that there may be increased CXCR4 expression of hNPCs plated on the HA-Lm gel after 24 hours, indicating that HA-Lm gels may provide a valuable scaffold to support viability and migration of hNPCs to the injury site. Future studies aimed at verifying increased CXCR4 expression of hNPCs cultured on HA-Lm gels are necessary to determine if HA-Lm gels can provide a beneficial scaffold for stem cell engraftment therapy for treating TBI.
ContributorsHemphill, Kathryn Elizabeth (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135576-Thumbnail Image.png
Description
Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac

Cardiac tissue engineering is an emerging field that has the potential to regenerate and repair damaged cardiac tissues after myocardial infarction. Numerous studies have introduced hydrogel-based cardiac tissue constructs featuring suitable microenvironments for cell growth along with precise surface topographies for directed cell organization. Despite significant progress, previously developed cardiac tissue constructs have suffered from electrically insulated matrices and low cell retention. To address these drawbacks, we fabricated micropatterned hybrid hydrogel constructs (uniaxial microgrooves with 50 µm with) using a photocrosslinkable gelatin methacrylate (GelMA) hydrogel incorporated with gold nanorods (GNRs). The electrical impedance results revealed a lower impedance in the GelMA-GNR constructs versus the pure GelMA constructs. Superior electrical conductivity of GelMA-GNR hydrogels (due to incorporation of GNRs) enabled the hybrid tissue constructs to be externally stimulated using a pulse generator. Furthermore, GelMA-GNR tissue hydrogels were tested to investigate the biological characteristics of cultured cardiomyocytes. The F-actin fiber analysis results (area coverage and alignment indices) revealed higher directed (uniaxial) cytoskeleton organization of cardiac cells cultured on the GelMA-GNR hydrogel constructs in comparison to pure GelMA. Considerable increase in the coverage area of cardiac-specific markers (sarcomeric α-actinin and connexin 43) were observed on the GelMA-GNR hybrid constructs compared to pure GelMA hydrogels. Despite substantial dissimilarities in cell organization, both pure GelMA and hybrid GelMA-GNR hydrogel constructs provided a suitable microenvironment for synchronous beating of cardiomyocytes.
ContributorsMoore, Nathan Allen (Author) / Nikkhah, Mehdi (Thesis director) / Smith, Barbara (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.
ContributorsAfzalian Naini, Nima (Author) / Pizziconi, Vincent (Thesis director) / Ankeny, Casey (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134308-Thumbnail Image.png
Description
Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and

Cancer is one of the leading causes of death globally according to the World Health Organization. Although improved treatments and early diagnoses have reduced cancer related mortalities, metastatic disease remains a major clinical challenge. The local tumor microenvironment plays a significant role in cancer metastasis, where tumor cells respond and adapt to a plethora of biochemical and biophysical signals from stromal cells and extracellular matrix (ECM) proteins. Due to these complexities, there is a critical need to understand molecular mechanisms underlying cancer metastasis to facilitate the discovery of more effective therapies. In the past few years, the integration of advanced biomaterials and microengineering approaches has initiated the development of innovative platform technologies for cancer research. These technologies enable the creation of biomimetic in vitro models with physiologically relevant (i.e. in vivo-like) characteristics to conduct studies ranging from fundamental cancer biology to high-throughput drug screening. In this review article, we discuss the biological significance of each step of the metastatic cascade and provide a broad overview on recent progress to recapitulate these stages using advanced biomaterials and microengineered technologies. In each section, we will highlight the advantages and shortcomings of each approach and provide our perspectives on future directions.
ContributorsPeela, Nitish (Author) / Nikkhah, Mehdi (Thesis director) / LaBaer, Joshua (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description
Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane

Abstract
The aim of the research performed was to increase research potential in the field of cell stimulation by developing a method to adhere human neural progenitor cells (hNPC’s) to a sterilized stretchable microelectrode array (SMEA). The two primary objectives of our research were to develop methods of sterilizing the polydimethylsiloxane (PDMS) substrate being used for the SMEA, and to derive a functional procedure for adhering hNPC’s to the PDMS. The proven method of sterilization was to plasma treat the sample and then soak it in 70% ethanol for one hour. The most successful method for cell adhesion was plasma treating the PDMS, followed by treating the surface of the PDMS with 0.01 mg/mL poly-l-lysine (PLL) and 3 µg/cm2 laminin. The development of these methods was an iterative process; as the methods were tested, any problems found with the method were corrected for the next round of testing until a final method was confirmed. Moving forward, the findings will allow for cell behavior to be researched in a unique fashion to better understand the response of adherent cells to physical stimulation by measuring changes in their electrical activity.
ContributorsBridgers, Carson (Co-author) / Peterson, Mara (Co-author) / Stabenfeldt, Sarah (Thesis director) / Graudejus, Oliver (Committee member) / Harrington Bioengineering Program (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136361-Thumbnail Image.png
Description
Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual

Determining the characteristics of an object during a grasping task requires a combination of mechanoreceptors in the muscles and fingertips. The width of a person's finger aperture during the grasp may affect the accuracy of how that person determines hardness, as well. These experiments aim to investigate how an individual perceives hardness amongst a gradient of varying hardness levels. The trend in the responses is assumed to follow a general psychometric function. This will provide information about subjects' abilities to differentiate between two largely different objects, and their tendencies towards guess-chances upon the presentation of two similar objects. After obtaining this data, it is then important to additionally test varying finger apertures in an object-grasping task. This will allow an insight into the effect of aperture on the obtained psychometric function, thus ultimately providing information about tactile and haptic feedback for further application in neuroprosthetic devices. Three separate experiments were performed in order to test the effect of finger aperture on object hardness differentiation. The first experiment tested a one-finger pressing motion among a hardness gradient of ballistic gelatin cubes. Subjects were asked to compare the hardness of one cube to another, which produced the S-curve that accurately portrayed the psychometric function. The second experiment utilized the Phantom haptic device in a similar setup, using the precision grip grasping motion, instead. This showed a more linear curve; the percentage reported harder increased as the hardness of the second presented cube increased, which was attributed to both the experimental setup limitations and the scale of the general hardness gradient. The third experiment then progressed to test the effect of three finger apertures in the same experimental setup. By providing three separate testing scenarios in the precision grip task, the experiment demonstrated that the level of finger aperture has no significant effect on an individual's ability to perceive hardness.
ContributorsMaestas, Gabrielle Elise (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133847-Thumbnail Image.png
Description
With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are

With an increased demand for more enzyme-sensitive, bioresorbable and more biodegradable polymers, various studies of copolymers have been developed. Polymers are widely used in various applications of biomedical engineering such as in tissue engineering, drug delivery and wound healing. Depending on the conditions in which polymers are used, they are modified to accommodate a specific need. For instance, polymers used in drug delivery are more efficient if they are biodegradable. This ensures that the delivery system does not remain in the body after releasing the drug. It is therefore crucial that the polymer used in the drug system possess biodegradable properties. Such modification can be done in different ways including the use of peptides to make copolymers that will degrade in the presence of enzymes. In this work, we studied the effect of a polypeptide GAPGLL on the polymer NIPAAm and compare with the previously studied Poly(NIPAAm-co-GAPGLF). Both copolymers Poly(NIPAAm-co-GAPGLL) were first synthesized from Poly(NIPAAm-co-NASI) through nucleophilic substitution by the two peptides. The synthesis of these copolymers was confirmed by 1H NMR spectra and through cloud point measurement, the corresponding LCST was determined. Both copolymers were degraded by collagenase enzyme at 25 ° C and their 1H NMR spectra confirmed this process. Both copolymers were cleaved by collagenase, leading to an increase in solubility which yielded a higher LCST compared to before enzyme degradation. Future studies will focus on evaluating other peptides and also using other techniques such as Differential Scanning Microcalorimetry (DSC) to better observe the LCST behavior. Moreover, enzyme kinetics studies is also crucial to evaluate how fast the enzyme degrades each of the copolymers.
ContributorsUwiringiyimana, Mahoro Marie Chantal (Author) / Vernon, Brent (Thesis director) / Nikkhah, Mehdi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137461-Thumbnail Image.png
Description
A great deal of research has been done on communication barriers between patient and doctor, but due to the complexity of the relationship, little successful solutions have been suggested to bridge interdisciplinary communication between the two persons. This project explores a solution to aid both patient and doctor as they

A great deal of research has been done on communication barriers between patient and doctor, but due to the complexity of the relationship, little successful solutions have been suggested to bridge interdisciplinary communication between the two persons. This project explores a solution to aid both patient and doctor as they seek to communicate with each other regarding the patient's prognosis and treatment with a medical device. By creating a website, the information found therein can be accessed in the doctor's office by using a smartphone or tablet so that both patient and doctor can use it as a resource before, during, and after a doctor's visit. The website, Medical Devices 4 U (MD4U), gives background information on a large selection of medical devices, allows primary sources to share their information with potential consumers of the medical device, permits users to ask questions and comment on other user's comments, and gives a list of questions that a patient can ask a healthcare professional during a doctor's visit. In this report, the nature of doctor and patient communication is exposed and the steps taken to alleviate the communication barriers by way of creating a website are explained.
ContributorsHalls, Sarah Koy (Author) / Spano, Mark (Thesis director) / Garcia, Antonio (Committee member) / Brandon, Tedd (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137469-Thumbnail Image.png
Description
Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation

Oxygen delivery is crucial for the development of healthy, functional tissue. Low tissue oxygenation, or hypoxia, is a characteristic that is common in many tumors. Hypoxia contributes to tumor malignancy and can reduce the success of chemotherapy and radiation treatment. There is a current need to noninvasively measure tumor oxygenation or pO2 in patients to determine a personalized treatment method. This project focuses on creating and characterizing nanoemulsions using a pO2 reporter molecule hexamethyldisiloxane (HMDSO) and its longer chain variants as well as assessing their cytotoxicity. We also explored creating multi-modal (MRI/Fluorescence) nanoemulsions.
ContributorsGrucky, Marian Louise (Author) / Kodibagkar, Vikram (Thesis director) / Rege, Kaushal (Committee member) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05