Matching Items (11)
Filtering by

Clear all filters

152656-Thumbnail Image.png
Description
The basal ganglia are four sub-cortical nuclei associated with motor control and reward learning. They are part of numerous larger mostly segregated loops where the basal ganglia receive inputs from specific regions of cortex. Converging on these inputs are dopaminergic neurons that alter their firing based on received and/or predicted

The basal ganglia are four sub-cortical nuclei associated with motor control and reward learning. They are part of numerous larger mostly segregated loops where the basal ganglia receive inputs from specific regions of cortex. Converging on these inputs are dopaminergic neurons that alter their firing based on received and/or predicted rewarding outcomes of a behavior. The basal ganglia's output feeds through the thalamus back to the areas of the cortex where the loop originated. Understanding the dynamic interactions between the various parts of these loops is critical to understanding the basal ganglia's role in motor control and reward based learning. This work developed several experimental techniques that can be applied to further study basal ganglia function. The first technique used micro-volume injections of low concentration muscimol to decrease the firing rates of recorded neurons in a limited area of cortex in rats. Afterwards, an artificial cerebrospinal fluid flush was injected to rapidly eliminate the muscimol's effects. This technique was able to contain the effects of muscimol to approximately a 1 mm radius volume and limited the duration of the drug effect to less than one hour. This technique could be used to temporarily perturb a small portion of the loops involving the basal ganglia and then observe how these effects propagate in other connected regions. The second part applied self-organizing maps (SOM) to find temporal patterns in neural firing rate that are independent of behavior. The distribution of detected patterns frequency on these maps can then be used to determine if changes in neural activity are occurring over time. The final technique focused on the role of the basal ganglia in reward learning. A new conditioning technique was created to increase the occurrence of selected patterns of neural activity without utilizing any external reward or behavior. A pattern of neural activity in the cortex of rats was selected using an SOM. The pattern was then reinforced by being paired with electrical stimulation of the medial forebrain bundle triggering dopamine release in the basal ganglia. Ultimately, this technique proved unsuccessful possibly due to poor selection of the patterns being reinforced.
ContributorsBaldwin, Nathan Aaron (Author) / Helms Tillery, Stephen I (Thesis advisor) / Castaneda, Edward (Committee member) / Buneo, Christopher A (Committee member) / Muthuswamy, Jitendran (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014
152687-Thumbnail Image.png
Description
Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to this study. Also for fundamental scientific investigations in general and for some applications such as brain machine interface, the recorded neural waveforms need to be analyzed first to identify neural action potentials as basic computing units. Prior to analyzing and modeling the recorded neural signals, this dissertation proposes an advanced spike sorting system, the M-Sorter, to extract the action potentials from raw neural waveforms. The M-Sorter shows better or comparable performance compared with two other popular spike sorters under automatic mode. With the sorted action potentials in place, neuronal activity in the AGm and AGl areas in rats during learning of a directional choice task is examined. Systematic analyses suggest that rat's neural activity in AGm and AGl was modulated by previous trial outcomes during learning. Single unit based neural dynamics during task learning are described in detail in the dissertation. Furthermore, the differences in neural modulation between fast and slow learning rats were compared. The results show that the level of neural modulation of previous trial outcome is different in fast and slow learning rats which may in turn suggest an important role of previous trial outcome encoding in learning.
ContributorsYuan, Yu'an (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2014
152691-Thumbnail Image.png
Description
Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the left/right side of the interface panel. Behavior analysis showed that rat's movement parameters during performance of directional choices became stereotyped very quickly (2-3 days) while learning to solve the directional choice problem took weeks to occur. The entire learning process was further broken down to 3 stages, each having similar number of recording sessions (days). Single unit based firing rate analysis revealed that 1) directional rate modulation was observed in both cortices; 2) the averaged mean rate between left and right trials in the neural ensemble each day did not change significantly among the three learning stages; 3) the rate difference between left and right trials of the ensemble did not change significantly either. Besides, for either left or right trials, the trial-to-trial firing variability of single neurons did not change significantly over the three stages. To explore the spatiotemporal neural pattern of the recorded ensemble, support vector machines (SVMs) were constructed each day to decode the direction of choice in single trials. Improved classification accuracy indicated enhanced discriminability between neural patterns of left and right choices as learning progressed. When using a restricted Boltzmann machine (RBM) model to extract features from neural activity patterns, results further supported the idea that neural firing patterns adapted during the three learning stages to facilitate the neural codes of directional choices. Put together, these findings suggest a spatiotemporal neural coding scheme in a rat AGl and AGm neural ensemble that may be responsible for and contributing to learning the directional choice task.
ContributorsMao, Hongwei (Author) / Si, Jennie (Thesis advisor) / Buneo, Christopher (Committee member) / Cao, Yu (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2014
152800-Thumbnail Image.png
Description
To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural

To uncover the neural correlates to go-directed behavior, single unit action potentials are considered fundamental computing units and have been examined by different analytical methodologies under a broad set of hypotheses. Using a behaving rat performing a directional choice learning task, we aim to study changes in rat's cortical neural patterns while he improved his task performance accuracy from chance to 80% or higher. Specifically, simultaneous multi-channel single unit neural recordings from the rat's agranular medial (AGm) and Agranular lateral (AGl) cortices were analyzed using joint peristimulus time histogram (JPSTHs), which effectively unveils firing coincidences in neural action potentials. My results based on data from six rats revealed that coincidences of pair-wise neural action potentials are higher when rats were performing the task than they were not at the learning stage, and this trend abated after the rats learned the task. Another finding is that the coincidences at the learning stage are stronger than that when the rats learned the task especially when they were performing the task. Therefore, this coincidence measure is the highest when the rats were performing the task at the learning stage. This may suggest that neural coincidences play a role in the coordination and communication among populations of neurons engaged in a purposeful act. Additionally, attention and working memory may have contributed to the modulation of neural coincidences during the designed task.
ContributorsCheng, Bing (Author) / Si, Jennie (Thesis advisor) / Chae, Junseok (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2014
150788-Thumbnail Image.png
Description
Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation

Interictal spikes, together with seizures, have been recognized as the two hallmarks of epilepsy, a brain disorder that 1% of the world's population suffers from. Even though the presence of spikes in brain's electromagnetic activity has diagnostic value, their dynamics are still elusive. It was an objective of this dissertation to formulate a mathematical framework within which the dynamics of interictal spikes could be thoroughly investigated. A new epileptic spike detection algorithm was developed by employing data adaptive morphological filters. The performance of the spike detection algorithm was favorably compared with others in the literature. A novel spike spatial synchronization measure was developed and tested on coupled spiking neuron models. Application of this measure to individual epileptic spikes in EEG from patients with temporal lobe epilepsy revealed long-term trends of increase in synchronization between pairs of brain sites before seizures and desynchronization after seizures, in the same patient as well as across patients, thus supporting the hypothesis that seizures may occur to break (reset) the abnormal spike synchronization in the brain network. Furthermore, based on these results, a separate spatial analysis of spike rates was conducted that shed light onto conflicting results in the literature about variability of spike rate before and after seizure. The ability to automatically classify seizures into clinical and subclinical was a result of the above findings. A novel method for epileptogenic focus localization from interictal periods based on spike occurrences was also devised, combining concepts from graph theory, like eigenvector centrality, and the developed spike synchronization measure, and tested very favorably against the utilized gold rule in clinical practice for focus localization from seizures onset. Finally, in another application of resetting of brain dynamics at seizures, it was shown that it is possible to differentiate with a high accuracy between patients with epileptic seizures (ES) and patients with psychogenic nonepileptic seizures (PNES). The above studies of spike dynamics have elucidated many unknown aspects of ictogenesis and it is expected to significantly contribute to further understanding of the basic mechanisms that lead to seizures, the diagnosis and treatment of epilepsy.
ContributorsKrishnan, Balu (Author) / Iasemidis, Leonidas (Thesis advisor) / Tsakalis, Kostantinos (Committee member) / Spanias, Andreas (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
150499-Thumbnail Image.png
Description
The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by measuring the rotation of the initial movement direction induced by a perturbation of the visual feedback prior to movement onset. The results suggest that contribution of vision was relatively consistent across the evaluated workspace depths; however, the influence of vision differed between the vertical and later axes indicate that additional factors beyond vision and proprioception influence movement planning of 3-dimensional movements. If the first study investigated the role of noise in sensorimotor integration, the second and third studies investigate relative influence of sensorimotor noise on reaching performance. Specifically, they evaluate how the characteristics of neural processing that underlie movement planning and execution manifest in movement variability during natural reaching. Subjects performed reaching movements with and without visual feedback throughout the movement and the patterns of endpoint variability were compared across movement directions. The results of these studies suggest a primary role of visual feedback noise in shaping patterns of variability and in determining the relative influence of planning and execution related noise sources. The final work considers a computational approach to characterizing how sensorimotor processes interact to shape movement variability. A model of multi-modal feedback control was developed to simulate the interaction of planning and execution noise on reaching variability. The model predictions suggest that anisotropic properties of feedback noise significantly affect the relative influence of planning and execution noise on patterns of reaching variability.
ContributorsApker, Gregory Allen (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
134718-Thumbnail Image.png
Description
Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My

Rasopathies are a family of developmental syndromes that exhibit craniofacial abnormalities, cognitive disabilities, developmental delay and increased risk of cancer. However, little is known about the pathogenesis of developmental defects in the nervous system. Frequently, gain-of-function mutations in the Ras/Raf/MEK/ERK cascade (aka ERK/MAPK) are associated with the observed pathogenesis. My research focuses on defining the relationship between increased ERK/MAPK signaling and its effects on the nervous system, specifically in the context of motor learning. Motor function depends on several neuroanatomically distinct regions, especially the spinal cord, cerebellum, striatum, and cerebral cortex. We tested whether hyperactivation of ERK/MAPK specifically in the cortex was sufficient to drive changes in motor function. We used a series of genetically modified mouse models and cre-lox technology to hyperactivate ERK/MAPK in the cerebral cortex. Nex:Cre/NeuroD6:Cre was employed to express a constitutively active MEK mutation throughout all layers of the cerebral cortex from an early stage of development. RBP4:Cre, caMEK only exhibited hyper activation in cortical glutamatergic neurons responsible for cortical output (neurons in layer V of the cerebral cortex). First, the two mouse strains were tested in an open field paradigm to assess global locomotor abilities and overall fitness for fine motor tasks. Next, a skilled motor reaching task was used to evaluate motor learning capabilities. The results show that Nex:Cre/NeuroD6:Cre, caMEK mutants do not learn the motor reaching task, although they performed normally on the open field task. Preliminary results suggest RBP4:Cre, caMEK mutants exhibit normal locomotor capabilities and a partial lack of learning. The difference in motor learning capabilities might be explained by the extent of altered connectivity in different regions of the corticospinal tract. Once we have identified the neuropathological effects of various layers in the cortex we will be able to determine whether therapeutic interventions are sufficient to reverse these learning defects.
ContributorsRoose, Cassandra Ann (Author) / Newbern, Jason M. (Thesis director) / Olive, Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134278-Thumbnail Image.png
Description
The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for

The RAS/MAPK (RAS/Mitogen Activated Protein Kinase) pathway is a highly conserved, canonical signaling cascade that is highly involved in cellular growth and proliferation as well as cell migration. As such, it plays an important role in development, specifically in development of the nervous system. Activation of ERK is indispensable for the differentiation of Embryonic Stem Cells (ESC) into neuronal precursors (Li z et al, 2006). ERK signaling has also shown to mediate Schwann cell myelination of the peripheral nervous system (PNS) as well as oligodendrocyte proliferation (Newbern et al, 2011). The class of developmental disorders that result in the dysregulation of RAS signaling are known as RASopathies. The molecular and cell-specific consequences of these various pathway mutations remain to be elucidated. While there is evidence for altered DNA transcription in RASopathies, there is little work examining the effects of the RASopathy-linked mutations on protein translation and post-translational modifications in vivo. RASopathies have phenotypic and molecular similarities to other disorders such as Fragile X Syndrome (FXS) and Tuberous Sclerosis (TSC) that show evidence of aberrant protein synthesis and affect related pathways. There are also well-defined downstream RAS pathway elements involved in translation. Additionally, aberrant corticospinal axon outgrowth has been observed in disease models of RASopathies (Xing et al, 2016). For these reasons, this present study examines a subset of proteins involved in translation and translational regulation in the context of RASopathy disease states. Results indicate that in both of the tested RASopathy model systems, there is altered mTOR expression. Additionally the loss of function model showed a decrease in rps6 activation. This data supports a role for the selective dysregulation of translational control elements in RASopathy models. This data also indicates that the primary candidate mechanism for control of altered translation in these modes is through the altered expression of mTOR.
ContributorsHilbert, Alexander Robert (Author) / Newbern, Jason (Thesis director) / Olive, M. Foster (Committee member) / Bjorklund, Reed (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154668-Thumbnail Image.png
Description
Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics.

This dissertation presents a work to develop optical methods for studying cell mechanics

Mechanical properties of cells are important in maintaining physiological functions of biological systems. Quantitative measurement and analysis of mechanical properties can help understand cellular mechanics and its functional relevance and discover physical biomarkers for diseases monitoring and therapeutics.

This dissertation presents a work to develop optical methods for studying cell mechanics which encompasses four applications. Surface plasmon resonance microscopy based optical method has been applied to image intracellular motions and cell mechanical motion. This label-free technique enables ultrafast imaging with extremely high sensitivity in detecting cell deformation. The technique was first applied to study intracellular transportation. Organelle transportation process and displacement steps of motor protein can be tracked using this method. The second application is to study heterogeneous subcellular membrane displacement induced by membrane potential (de)polarization. The application can map the amplitude and direction of cell deformation. The electromechanical coupling of mammalian cells was also observed. The third application is for imaging electrical activity in single cells with sub-millisecond resolution. This technique can fast record actions potentials and also resolve the fast initiation and propagation of electromechanical signals within single neurons. Bright-field optical imaging approach has been applied to the mechanical wave visualization that associated with action potential in the fourth application. Neuron-to-neuron viability of membrane displacement was revealed and heterogeneous subcellular response was observed.

All these works shed light on the possibility of using optical approaches to study millisecond-scale and sub-nanometer-scale mechanical motions. These studies revealed ultrafast and ultra-small mechanical motions at the cellular level, including motor protein-driven motions and electromechanical coupled motions. The observations will help understand cell mechanics and its biological functions. These optical approaches will also become powerful tools for elucidating the interplay between biological and physical functions.
ContributorsYang, Yunze (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / Goryll, Michael (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2016
154148-Thumbnail Image.png
Description
Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this

Brain-machine interfaces (BMIs) were first imagined as a technology that would allow subjects to have direct communication with prosthetics and external devices (e.g. control over a computer cursor or robotic arm movement). Operation of these devices was not automatic, and subjects needed calibration and training in order to master this control. In short, learning became a key component in controlling these systems. As a result, BMIs have become ideal tools to probe and explore brain activity, since they allow the isolation of neural inputs and systematic altering of the relationships between the neural signals and output. I have used BMIs to explore the process of brain adaptability in a motor-like task. To this end, I trained non-human primates to control a 3D cursor and adapt to two different perturbations: a visuomotor rotation, uniform across the neural ensemble, and a decorrelation task, which non-uniformly altered the relationship between the activity of particular neurons in an ensemble and movement output. I measured individual and population level changes in the neural ensemble as subjects honed their skills over the span of several days. I found some similarities in the adaptation process elicited by these two tasks. On one hand, individual neurons displayed tuning changes across the entire ensemble after task adaptation: most neurons displayed transient changes in their preferred directions, and most neuron pairs showed changes in their cross-correlations during the learning process. On the other hand, I also measured population level adaptation in the neural ensemble: the underlying neural manifolds that control these neural signals also had dynamic changes during adaptation. I have found that the neural circuits seem to apply an exploratory strategy when adapting to new tasks. Our results suggest that information and trajectories in the neural space increase after initially introducing the perturbations, and before the subject settles into workable solutions. These results provide new insights into both the underlying population level processes in motor learning, and the changes in neural coding which are necessary for subjects to learn to control neuroprosthetics. Understanding of these mechanisms can help us create better control algorithms, and design training paradigms that will take advantage of these processes.
ContributorsArmenta Salas, Michelle (Author) / Helms Tillery, Stephen I (Thesis advisor) / Si, Jennie (Committee member) / Buneo, Christopher (Committee member) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2015