Matching Items (21)
Filtering by

Clear all filters

136488-Thumbnail Image.png
Description
We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.
ContributorsBlitz, Samuel Harris (Author) / Richard, Lebed (Thesis director) / Comfort, Joseph (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
136114-Thumbnail Image.png
Description
Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the

Preliminary feasibility studies for two possible experiments with the GlueX detector, installed in Hall D of Jefferson Laboratory, are presented. First, a general study of the feasibility of detecting the ηC at the current hadronic rate is discussed, without regard for detector or reconstruction efficiency. Second, a study of the use of statistical methods in studying exotic meson candidates is outlined, describing methods and providing preliminary data on their efficacy.
ContributorsPrather, Benjamin Scott (Author) / Ritchie, Barry G. (Thesis director) / Dugger, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
136216-Thumbnail Image.png
Description
In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as

In this paper, optimal control routines are applied to an existing problem of electron state transfer to determine if spin information can successfully be moved across a chain of donor atoms in silicon. The additional spin degrees of freedom are introduced into the formulation of the problem as well as the control optimization algorithm. We find a timescale of transfer for spin quantum information across the chain fitting with a t > π/A and t > 2π/A transfer pulse time corresponding with rotation of states on the electron Bloch sphere where A is the electron-nuclear coupling constant. Introduction of a magnetic field weakens transfer
efficiencies at high field strengths and prohibits anti-aligned nuclear states from transferring. We also develop a rudimentary theoretical model based on simulated results and partially validate the characteristic transfer times for spin states. This model also establishes a framework for future work including the introduction of a magnetic field.
ContributorsMorgan, Eric Robert (Author) / Treacy, Michael (Thesis director) / Whaley, K. Birgitta (Committee member) / Greenman, Loren (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor)
Created2015-05
132440-Thumbnail Image.png
Description
In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental

In this experiment an Electrodynamic Ion Ring Trap was constructed and tested. Due to the nature of Electrostatic fields, the setup required an oscillating voltage source to stably trap the particles. It was built in a safe manner, The power supply was kept in a project box to avoid incidental contact, and was connected to a small copper wire in the shape of a ring. The maximum voltage that could be experienced via incidental contact was well within safe ranges a 0.3mA. Within minutes of its completion the trap was able to trap small Lycopodium powder spores mass of approximately 1.7*10^{-11}kg in clusters of 15-30 for long timescales. The oscillations of these spores were observed to be roughly 1.01mm at their maximum, and in an attempt to understand the dynamics of the Ion Trap, a concept called the pseudo-potential of the trap was used. This method proved fairly inaccurate, involving much estimation and using a static field estimation of 9.39*10^8 N\C and a charge estimate on the particles of ~1e, a maximum oscillation distance of 1.37m was calculated. Though the derived static field strength was not far off from the field strength required to achieve the correct oscillation distance (Percent error of 9.92%, the small discrepancy caused major calculation errors. The trap's intended purpose however was to eventually trap protein molecules for mapping via XFEL laser, and after its successful construction that goal is fairly achievable. The trap was also housed in a vacuum chamber so that it could be more effectively implemented with the XFEL.
ContributorsNicely, Ryan Joseph (Author) / Kirian, Richard (Thesis director) / Weiterstall, Uwe (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
137120-Thumbnail Image.png
Description
Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be

Science fiction has a unique ability to express, analyze, and critique concepts in a subtle way that emphasizes a point but is still entertaining to the audience. Because of science fiction's ability to do this it has long been a powerful way to ask questions that would normally not be addressed. As such, this paper provides an overview of the effects of biomedical technology in science fiction films. The discussions in this paper will analyze the different portrayals of the technology in the viewed cinematic pieces and the effects they have on the characters in the film. The discussion will begin with the films that have technology based in Genetic Engineering. This will then be followed by a discussion of the biomedical technology based in the fields of Endocrinology; Reanimation; Preservation; Prosthetics; Physical Metamorphosis; Super-Drugs and Super-Viruses; and Diagnostic, Surgical, and Monitoring Equipment. At the end of this paper movie summaries are provided to assist in clarifying plot details.
ContributorsGrzybowski, Amanda Ann (Author) / Foy, Joseph (Thesis director) / Facinelli, Diane (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
133444-Thumbnail Image.png
Description
Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing

Abstract Modern imaging techniques for sciatic nerves often use imaging techniques that can clearly find myelinated axons (Group A and Group B and analyze their properties, but have trouble with the more numerous Remak Fibers (Group C). In this paper, Group A and B fibers are analyzed while also analyzing Remak fibers using osmium tetroxide staining and imaging with the help of transmission electron microscopy. Using this method, nerves had various electrical stimuli attached to them and were analyzed as such. They were analyzed with a cuff electrode attached, a stimulator attached, and both, with images taken at the center of the nerve and the ends of them. The number and area taken by the Remak fibers were analyzed, along with the g-ratios of the Group A and B fibers. These were analyzed to help deduce the overall health of the fibers along with vacuolization, and mitochondria available. While some important information was gained from this evaluation, further testing has to be done to improve the myelin detection system, along with analyzing the proper and necessary Remak fibers and the role they play. The research tries to thoroughly look at the necessary material and find a way to use it as a guide to further experimentation with electrical stimuli, and notes the differences found within and without various groups, various points of observation, and various stimuli as a whole. Nevertheless, this research allows a strong look into the benefits of transmission electron microscopy and the ability to assess electrical stimulation from these points.
ContributorsNambiar, Karthik (Author) / Muthuswamy, Jitendran (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133977-Thumbnail Image.png
Description
Within the context of the Finite-Difference Time-Domain (FDTD) method of simulating interactions between electromagnetic waves and matter, we adapt a known absorbing boundary condition, the Convolutional Perfectly-Matched Layer (CPML) to a background of Drude-dispersive medium. The purpose of this CPML is to terminate the virtual grid of scattering simulations by

Within the context of the Finite-Difference Time-Domain (FDTD) method of simulating interactions between electromagnetic waves and matter, we adapt a known absorbing boundary condition, the Convolutional Perfectly-Matched Layer (CPML) to a background of Drude-dispersive medium. The purpose of this CPML is to terminate the virtual grid of scattering simulations by absorbing all outgoing radiation. In this thesis, we exposit the method of simulation, establish the Perfectly-Matched Layer as a domain which houses a spatial-coordinate transform to the complex plane, construct the CPML in vacuum, adapt the CPML to the Drude medium, and conclude with tests of the adapted CPML for two different scattering geometries.
ContributorsThornton, Brandon Maverick (Author) / Sukharev, Maxim (Thesis director) / Goodnick, Stephen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135129-Thumbnail Image.png
Description
A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to

A working knowledge of mathematics is a vital requirement for introductory university physics courses. However, there is mounting evidence which shows that many incoming introductory physics students do not have the necessary mathematical ability to succeed in physics. The investigation reported in this thesis used preinstruction diagnostics and interviews to examine this problem in depth. It was found that in some cases, over 75% of students could not solve the most basic mathematics problems. We asked questions involving right triangles, vector addition, vector direction, systems of equations, and arithmetic, to give a few examples. The correct response rates were typically between 25% and 75%, which is worrying, because these problems are far simpler than the typical problem encountered in an introductory quantitative physics course. This thesis uncovered a few common problem solving strategies that were not particularly effective. When solving trigonometry problems, 13% of students wrote down the mnemonic "SOH CAH TOA," but a chi-squared test revealed that this was not a statistically significant factor in getting the correct answer, and was actually detrimental in certain situations. Also, about 50% of students used a tip-to-tail method to add vectors. But there is evidence to suggest that this method is not as effective as using components. There are also a number of problem solving strategies that successful students use to solve mathematics problems. Using the components of a vector increases student success when adding vectors and examining their direction. Preliminary evidence also suggests that repetitive trigonometry practice may be the best way to improve student performance on trigonometry problems. In addition, teaching students to use a wide variety of algebraic techniques like the distributive property may help them from getting stuck when working through problems. Finally, evidence suggests that checking work could eliminate up to a third of student errors.
ContributorsJones, Matthew Isaiah (Author) / Meltzer, David (Thesis director) / Peng, Xihong (Committee member) / Department of Physics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137683-Thumbnail Image.png
Description
Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we

Rupture of intracranial aneurysms causes a subarachnoid hemorrhage, which is often lethal health event. A minimally invasive method of solving this problem may involve a material, which can be administered as a liquid and then becomes a strong solid within minutes preventing flow of blood in the aneurysm. Here we report on the development of temperature responsive copolymers, which are deliverable through a microcatheter at body temperature and then rapidly cure to form a highly elastic hydrogel. To our knowledge, this is the first physical-and chemical-crosslinked hydrogel capable of rapid crosslinking at temperatures above the gel transition temperature. The polymer system, poly(N-isopropylacrylamide-co-cysteamine-co-Jeffamine® M-1000 acrylamide) and poly(ethylene glycol) diacrylate, was evaluated in wide-neck aneurysm flow models to evaluate the stability of the hydrogels. Investigation of this polymer system indicates that the Jeffamine® M-1000 causes the gels to retain water, resulting in gels that are initially weak and viscous, but become stronger and more elastic after chemical crosslinking.
ContributorsLee, Elizabeth Jean (Author) / Vernon, Brent (Thesis director) / Brennecka, Celeste (Committee member) / Overstreet, Derek (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05