Matching Items (6)
Filtering by

Clear all filters

153498-Thumbnail Image.png
Description
Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric

Myoelectric control is lled with potential to signicantly change human-robot interaction.

Humans desire compliant robots to safely interact in dynamic environments

associated with daily activities. As surface electromyography non-invasively measures

limb motion intent and correlates with joint stiness during co-contractions,

it has been identied as a candidate for naturally controlling such robots. However,

state-of-the-art myoelectric interfaces have struggled to achieve both enhanced

functionality and long-term reliability. As demands in myoelectric interfaces trend

toward simultaneous and proportional control of compliant robots, robust processing

of multi-muscle coordinations, or synergies, plays a larger role in the success of the

control scheme. This dissertation presents a framework enhancing the utility of myoelectric

interfaces by exploiting motor skill learning and

exible muscle synergies for

reliable long-term simultaneous and proportional control of multifunctional compliant

robots. The interface is learned as a new motor skill specic to the controller,

providing long-term performance enhancements without requiring any retraining or

recalibration of the system. Moreover, the framework oers control of both motion

and stiness simultaneously for intuitive and compliant human-robot interaction. The

framework is validated through a series of experiments characterizing motor learning

properties and demonstrating control capabilities not seen previously in the literature.

The results validate the approach as a viable option to remove the trade-o

between functionality and reliability that have hindered state-of-the-art myoelectric

interfaces. Thus, this research contributes to the expansion and enhancement of myoelectric

controlled applications beyond commonly perceived anthropomorphic and

\intuitive control" constraints and into more advanced robotic systems designed for

everyday tasks.
ContributorsIson, Mark (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Greger, Bradley (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Fainekos, Georgios (Committee member) / Arizona State University (Publisher)
Created2015
Description
To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how

To achieve the ambitious long-term goal of a feet of cooperating Flexible Autonomous

Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design, control objectives for rear-wheel drive ground vehicles.

Toward this ambitious goal, several critical objectives are addressed. One central objective of the thesis was to show how to build low-cost multi-capability robot platform

that can be used for conducting FAME research.

A TFC-KIT car chassis was augmented to provide a suite of substantive capabilities.

The augmented vehicle (FreeSLAM Robot) costs less than $500 but offers the capability

of commercially available vehicles costing over $2000.

All demonstrations presented involve rear-wheel drive FreeSLAM robot. The following

summarizes the key hardware demonstrations presented and analyzed:

(1)Cruise (v, ) control along a line,

(2) Cruise (v, ) control along a curve,

(3) Planar (x, y) Cartesian Stabilization for rear wheel drive vehicle,

(4) Finish the track with camera pan tilt structure in minimum time,

(5) Finish the track without camera pan tilt structure in minimum time,

(6) Vision based tracking performance with different cruise speed vx,

(7) Vision based tracking performance with different camera fixed look-ahead distance L,

(8) Vision based tracking performance with different delay Td from vision subsystem,

(9) Manually remote controlled robot to perform indoor SLAM,

(10) Autonomously line guided robot to perform indoor SLAM.

For most cases, hardware data is compared with, and corroborated by, model based

simulation data. In short, the thesis uses low-cost self-designed rear-wheel

drive robot to demonstrate many capabilities that are critical in order to reach the

longer-term FAME goal.
ContributorsLu, Xianglong (Author) / Rodriguez, Armando Antonio (Thesis advisor) / Berman, Spring (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2016
168484-Thumbnail Image.png
Description
The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with

The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with a user’s range of motion and is actuated with X-oriented flat fabric pneumatic artificial muscles (X-ff-PAM) that contract when pressurized and can generate 190N of force at 200kPa in a 0.3 sec window. For use in gait assistance experiments, X-ff-PAM actuators were placed anterior and posterior to the right hip joint. Extension assistance and flexion assistance was provided in 10-45% and 50-90% of the gait cycle, respectively. Device effectivity was determined through range of motion (ROM) preservation and hip flexor and extensor muscular activity reduction. While the active suit reduced average hip ROM by 4o from the target 30o, all monitored muscles experienced significant reductions in electrical activity. The gluteus maximus and biceps femoris experienced electrical activity reduction of 13.1% and 6.6% respectively and the iliacus and rectus femoris experienced 10.7% and 27.7% respectively. To test suit rehabilitative potential, the actuators were programmed to apply periodic torque perturbations to induce locomotor entrainment. An X-ff-PAM was contracted at the subject’s preferred gait frequency and, in randomly ordered increments of 3%, increased up to 15% beyond. Perturbations located anterior and posterior to the hip were tested separately to assess impact of location on entrainment characteristics. All 11 healthy participants achieved entrainment in all 12 experimental conditions in both suit orientations. Phase-locking consistently occurred around toe-off phase of the gait cycle (GC). Extension perturbations synchronized earlier in the gait cycle (before 60% GC where peak hip extension occurs) than flexion perturbations (just after 60% GC at the transition from full hip extension to hip flexion), across group averaged results. The study demonstrated the suit can significantly extend the basin of entrainment and improve transient response compared to previously reported results and confirms that a single stable attractor exists during gait entrainment to unidirectional hip perturbations.
ContributorsBaye-Wallace, Lily (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
154029-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several

critical modeling, design and control objectives for ground vehicles. One central objective was to show how off-the-shelf (low-cost) remote-control (RC) “toy” vehicles can be converted into intelligent multi-capability robotic-platforms for conducting FAME research. This is shown for two vehicle classes: (1) six differential-drive (DD) RC vehicles called Thunder Tumbler (DDTT) and (2) one rear-wheel drive (RWD) RC car called Ford F-150 (1:14 scale). Each DDTT-vehicle was augmented to provide a substantive suite of capabilities as summarized below (It should be noted, however, that only one DDTT-vehicle was augmented with an inertial measurement unit (IMU) and 2.4 GHz RC capability): (1) magnetic wheel-encoders/IMU for(dead-reckoning-based) inner-loop speed-control and outer-loop position-directional-control, (2) Arduino Uno microcontroller-board for encoder-based inner-loop speed-control and encoder-IMU-ultrasound-based outer-loop cruise-position-directional-separation-control, (3) Arduino motor-shield for inner-loop motor-speed-control, (4)Raspberry Pi II computer-board for demanding outer-loop vision-based cruise- position-directional-control, (5) Raspberry Pi 5MP camera for outer-loop cruise-position-directional-control (exploiting WiFi to send video back to laptop), (6) forward-pointing ultrasonic distance/rangefinder sensor for outer-loop separation-control, and (7) 2.4 GHz spread-spectrum RC capability to replace original 27/49 MHz RC. Each “enhanced”/ augmented DDTT-vehicle costs less than 􀀀175 but offers the capability of commercially available vehicles costing over 􀀀500. Both the Arduino and Raspberry are low-cost, well-supported (software wise) and easy-to-use. For the vehicle classes considered (i.e. DD, RWD), both kinematic and dynamical (planar xy) models are examined. Suitable nonlinear/linear-models are used to develop inner/outer-loopcontrol laws.

All demonstrations presented involve enhanced DDTT-vehicles; one the F-150; one a quadrotor. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) position-control along line (3) position-control along curve (4) planar (xy) Cartesian stabilization, (5) cruise-control along jagged line/curve, (6) vehicle-target spacing-control, (7) multi-robot spacing-control along line/curve, (8) tracking slowly-moving remote-controlled quadrotor, (9) avoiding obstacle while moving toward target, (10) RC F-150 followed by DDTT-vehicle. Hardware data/video is compared with, and corroborated by, model-based simulations. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
ContributorsLin, Zhenyu (Author) / Rodriguez, Armando Antonio (Committee member) / Si, Jennie (Committee member) / Berman, Spring Melody (Committee member) / Arizona State University (Publisher)
Created2015
158858-Thumbnail Image.png
Description
Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies.

Stroke is a debilitating disorder and 75% of individuals with stroke (iwS) have upper extremity deficits. IwS are prescribed therapies to enhance upper-extremity mobility, but current most effective therapies have minimum requirements that the individuals with severe impairment do not meet. Thus, there is a need to enhance the therapies. Recent studies have shown that StartReact -the involuntary release of a planned movement, triggered by a startling stimulus (e.g., loud sound)- elicits faster and larger muscle activation in iwS compared to voluntary-initiated movement. However, StartReact has been only cursorily studied to date and there are some gaps in the StartReact knowledge. Previous studies have only evaluated StartReact on single-jointed movements in iwS, ignoring more functional tasks. IwS usually have abnormal flexor activity during extension tasks and abnormal muscle synergy especially during multi-jointed tasks; therefore, it is unknown 1) if more complex multi-jointed reach movements are susceptible to StartReact, and 2) if StartReact multi-jointed movements will be enhanced in the same way as single-jointed movements in iwS. In addition, previous studies showed that individuals with severe stroke, especially those with higher spasticity, experienced higher abnormal flexor muscle activation during StartReact trials. However, there is no study evaluating the impact of this elevated abnormal flexor activity on movement, muscle activation and muscle synergy alterations during voluntary-initiated movements after exposure to StartReact.
This dissertation evaluates StartReact and the voluntary trials before and after exposure to StartReact during a point-to-point multi-jointed reach task to three different targets covering a large workspace. The results show that multi-jointed reach tasks are susceptible to StartReact in iwS and the distance, muscle and movement onset speed, and muscle activations percentages and amplitude increase during StartReact trials. In addition, the distance, accuracy, muscle and movement onsets speeds, and muscle synergy similarity indices to the norm synergies increase during the voluntary-initiated trials after exposure to StartReact. Overall, this dissertation shows that exposure to StartReact did not impair voluntary-initiated movement and muscle synergy, but even improved them. Therefore, this study suggests that StartReact is safe for more investigations in training studies and therapy.
ContributorsRahimiTouranposhti, Marziye (Author) / Honeycutt, Claire F. (Thesis advisor) / Roh, Jinsook (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Schaefer, Sydney (Committee member) / Arizona State University (Publisher)
Created2020