Matching Items (6)
Filtering by

Clear all filters

157161-Thumbnail Image.png
Description
Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology).

Antibodies are naturally occurring proteins that protect a host during infection through direct neutralization and/or recruitment of the innate immune system. Unfortunately, in some infections, antibodies present unique hurdles that must be overcome for a safer and more efficacious antibody-based therapeutic (e.g., antibody dependent viral enhancement (ADE) and inflammatory pathology). This dissertation describes the utilization of plant expression systems to produce N-glycan specific antibody-based therapeutics for Dengue Virus (DENV) and Chikungunya Virus (CHIKV). The Fc region of an antibody interacts with Fcγ Receptors (FcγRs) on immune cells and components of the innate immune system. Each class of immune cells has a distinct action of neutralization (e.g., antibody dependent cell-mediated cytotoxicity (ADCC) and antibody dependent cell-mediated phagocytosis (ADCP)). Therefore, structural alteration of the Fc region results in novel immune pathways of protection. One approach is to modulate the N-glycosylation in the Fc region of the antibody. Of scientific significance, is the plant’s capacity to express human antibodies with homogenous plant and humanized N-glycosylation (WT and GnGn, respectively). This allows to study how specific glycovariants interact with other components of the immune system to clear an infection, producing a tailor-made antibody for distinct diseases. In the first section, plant-produced glycovariants were explored for reduced interactions with specific FcγRs for the overall reduction in ADE for DENV infections. The results demonstrate a reduction in ADE of our plant-produced monoclonal antibodies in in vitro experiments, which led to a greater survival in vivo of immunodeficient mice challenged with lethal doses of DENV and a sub-lethal dose of DENV in ADE conditions. In the second section, plant-produced glycovariants were explored for increased interaction with specific FcγRs to improve ADCC in the treatment of the highly inflammatory CHIKV. The results demonstrate an increase ADCC activity in in vitro experiments and a reduction in CHIKV-associated inflammation in in vivo mouse models. Overall, the significance of this dissertation is that it can provide a treatment for DENV and CHIKV; but equally importantly, give insight to the role of N-glycosylation in antibody effector functions, which has a broader implication for therapeutic development for other viral infections.
ContributorsHurtado, Jonathan (Author) / Chen, Qiang (Thesis advisor) / Arntzen, Charles (Committee member) / Borges, Chad (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
ContributorsPfeffer, Kirsten M. (Author) / Lake, Douglas (Thesis director) / Ho, Thai (Committee member) / Hastings, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168508-Thumbnail Image.png
Description
The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a

The growing field of immunotherapy has generated numerous promising diseasetreatment platforms in recent years. By utilizing the innate capabilities of the immune system, these treatments have provided a unique, simplistic approach to targeting and eliminating cancer. Among these, the bispecific T cell engager (BiTEÒ) model has demonstrated potential as a treatment capable of bringing immune cells into contact with cancer cells of interest and initiating perforin/granzyme-mediated cell death of the tumor. While standard BiTE platforms rely on targeting a tumor-specific receptor via its complementary antibody, no such universal receptor has been reported for glioblastoma (GBM), the most common and aggressive primary brain tumor which boasts a median survival of only 15 months. In addition to its dismal prognosis, GBM deploys several immune-evasion tactics that further complicate treatment and make targeted therapy difficult. However, it has been reported that chlorotoxin, a 36-amino acid peptide found in the venom of Leiurus quinquestriatus, binds specifically to glioma cells while not binding healthy tissue in humans. This specificity positions chlorotoxin as a prime candidate to act as a GBM-targeting moiety as one half of an immunotherapeutic treatment platform resembling the BiTE design which I describe here. Named ACDClx∆15, this fusion protein tethers a truncated chlorotoxin molecule to the variable region of a monoclonal antibody targeted to CD3ε on both CD8+ and CD4+ T cells and is theorized to bring T cells into contact with GBM in order to stimulate an artificial immune response against the tumor. Here I describe the design and production of ACDClx∆15 and test its ability to bind and activate T lymphocytes against murine GBM in vitro. ACDClx∆15 was shown to bind both GBM and T cells without binding healthy cells in vitro but did not demonstrate the ability to activate T cells in the presence of GBM.
ContributorsSchaefer, Braeden Scott (Author) / Mor, Tsafrir (Thesis advisor) / Mason, Hugh (Committee member) / Blattman, Joseph (Committee member) / Arizona State University (Publisher)
Created2021
Description
The treatment of melanoma is dependent on what stage the cancer has developed into. Metastatic melanoma is commonly treated with immune checkpoint inhibitors. Unfortunately, not all patients will respond to the treatment as expected. This paper develops important background knowledge on melanoma, how it is treated for each stage, and

The treatment of melanoma is dependent on what stage the cancer has developed into. Metastatic melanoma is commonly treated with immune checkpoint inhibitors. Unfortunately, not all patients will respond to the treatment as expected. This paper develops important background knowledge on melanoma, how it is treated for each stage, and immune checkpoint inhibitors.
ContributorsStates, Savanna (Author) / Lake, Douglas (Thesis director) / Chang, Yung (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2024-05
157613-Thumbnail Image.png
Description
Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of

Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of treatments for GBM. The blood-brain barrier (BBB) serves as a primary obstacle due to its innate ability to prevent unwanted molecules, such as most chemotherapeutics, from entering the brain tissue and reaching malignant cells. The GBM cells themselves serve as a second obstacle, having a high level of genetic and phenotypic heterogeneity. This characteristic improves the probability of a population of cells to have resistance to treatment, which ensures the survival of the tumor. Here, the development and testing of two different modes of therapy for treating GBM is described. These therapeutics were enhanced by pathogenic peptides known to improve entry into brain tissue or to bind GBM cells to overcome the BBB and/or tumor cell heterogeneity. The first therapeutic utilizes a small peptide, RVG-29, derived from the rabies virus glycoprotein to improve brain-specific delivery of nanoparticles encapsulated with a small molecule payload. RVG-29-targeted nanoparticles were observed to reach the brain of healthy mice in higher concentrations 2 hours following intravenous injection compared to control particles. However, targeted camptothecin-loaded nanoparticles were not capable of producing significant treatment benefits compared to non-targeted particles in an orthotopic mouse model of GBM. Peptide degradation following injection was shown to be a likely cause for reduced treatment benefit. The second therapeutic utilizes chlorotoxin, a non-toxic 36-amino acid peptide found in the venom of the deathstalker scorpion, expressed as a fusion to antibody fragments to enhance T cell recognition and killing of GBM. This candidate biologic, known as anti-CD3/chlorotoxin (ACDClx) is expressed as an insoluble protein in Nicotiana benthamiana and Escherichia coli and must be purified in denaturing and reducing conditions prior to being refolded. ACDClx was shown to selectively activate T cells only in the presence of GBM cells, providing evidence that further preclinical development of ACDClx as a GBM immunotherapy is warranted.
ContributorsCook, Rebecca Leanne (Author) / Blattman, Joseph N (Thesis advisor) / Sirianni, Rachael W. (Thesis advisor) / Mor, Tsafrir (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2019
132487-Thumbnail Image.png
Description
Fusion protein immunotherapies such as the bispecific T cell engager (BiTE) have displayed promising potential as cancer treatments capable of engaging the immune system against tumor cells. It has been shown that chlorotoxin, a 36-amino peptide found in the venom of the deathstalker scorpion (Leiurus quinquestriatus), binds specifically to glioblastoma

Fusion protein immunotherapies such as the bispecific T cell engager (BiTE) have displayed promising potential as cancer treatments capable of engaging the immune system against tumor cells. It has been shown that chlorotoxin, a 36-amino peptide found in the venom of the deathstalker scorpion (Leiurus quinquestriatus), binds specifically to glioblastoma (GBM) cells without binding healthy tissue, making it an ideal GBM cell binding moiety for a BiTE-like molecule. However, chlorotoxin’s four disulfide bonds pose a folding challenge outside of its natural context and impede production of the recombinant protein in various expression systems, including those relying on bacteria and plants. To overcome this difficulty, we have engineered a truncated chlorotoxin variant (Cltx∆15) that contains just two of the original eight cystine residues, thereby capable of forming only a single disulfide bond while maintaining its ability to bind GBM cells. We further created a BiTE (ACDClx∆15) which tethers Cltx∆15 to a single chain ⍺-CD3 antibody in order to bring T cells into contact with GBM cells. The gene for ACDClx∆15 was cloned into a pET-11a vector for expression in Escherichia coli and isolated from inclusion bodies before purification via affinity chromatography. Immunoblot analyses confirmed that ACDClx∆15 can be expressed in E. coli and purified with high yield and purity; moreover, flow cytometry indicated that ACDClx∆15 is capable of binding GBM cells. These data warrant further investigation into the ability of ACDClx∆15 to activate T cells against GBM cells.
ContributorsSchaefer, Braeden Scott (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Cook, Rebecca (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05