Matching Items (3)
Filtering by

Clear all filters

147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130973-Thumbnail Image.png
Description
The purpose of this project is to analyze the MIT OpenCourseWare coffee can radar design and modify it to be better suited for drone based synthetic aperture radar (SAR) applications while maintaining the low-cost aspect of the original design. The MIT coffee can radar can function as a ranged radar,

The purpose of this project is to analyze the MIT OpenCourseWare coffee can radar design and modify it to be better suited for drone based synthetic aperture radar (SAR) applications while maintaining the low-cost aspect of the original design. The MIT coffee can radar can function as a ranged radar, a Doppler radar, or as SAR. Through simulations and research, the suggestions for how to modify the radar resulted in swapping the coffee can monopole antennas for patch antenna arrays or helical ordinary end-fire antennas, adding an Arduino for automatic recording of output pulses, and switching from a breadboard construction to a PCB to shrink form factor and keep costs and construction time low.
ContributorsRivera, Danielle (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Department of Information Systems (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12