Matching Items (18)
Filtering by

Clear all filters

156042-Thumbnail Image.png
Description
The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial

The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial proteins expressed in human cell lines, yet they exhibit an organizing principle: that genes and proteins may be treated as modular units that can be moved from their native organism to a novel one. However, protein behavior is always unpredictable; drop-in functionality is not guaranteed.

My work characterizes how two different classes of tools behave in new contexts and explores methods to improve their functionality: 1. CRISPR/Cas9 in human cells and 2. quorum sensing networks in Escherichia coli.

1. The genome-editing tool CRISPR/Cas9 has facilitated easily targeted, effective, high throughput genome editing. However, Cas9 is a bacterially derived protein and its behavior in the complex microenvironment of the eukaryotic nucleus is not well understood. Using transgenic human cell lines, I found that gene-silencing heterochromatin impacts Cas9’s ability to bind and cut DNA in a site-specific manner and I investigated ways to improve CRISPR/Cas9 function in heterochromatin.

2. Bacteria use quorum sensing to monitor population density and regulate group behaviors such as virulence, motility, and biofilm formation. Homoserine lactone (HSL) quorum sensing networks are of particular interest to synthetic biologists because they can function as “wires” to connect multiple genetic circuits. However, only four of these networks have been widely implemented in engineered systems. I selected ten quorum sensing networks based on their HSL production profiles and confirmed their functionality in E. coli, significantly expanding the quorum sensing toolset available to synthetic biologists.
ContributorsDaer, René (Author) / Haynes, Karmella (Thesis advisor) / Brafman, David (Committee member) / Nielsen, David (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2017
156623-Thumbnail Image.png
Description
Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting,

Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting, and controlling gene transcriptional networks are presented and applied to two synthetic gene network contexts. First, this engineering approach is used to improve the function of the guide ribonucleic acid (gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is developed to more clearly observe gRNA dynamics and aid design. It is shown that through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be strong enough to exhibit measurable cascading behavior, previously only shown in RNA Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to achieve precise fractional differentiation of a population. Mathematical methods are employed to predict and understand the observed behavior, and metrics for analyzing and quantifying similar differentiation kinetics are presented. Through careful mathematical analysis and simulation, coupled with experimental data, two methods for achieving ratio control are presented, with the optimal schema for any application being dependent on the noisiness of the system under study. Together, these studies push the boundaries of gene network control, with potential applications in stem cell differentiation, therapeutics, and bio-production.
ContributorsMenn, David J (Author) / Wang, Xiao (Thesis advisor) / Kiani, Samira (Committee member) / Haynes, Karmella (Committee member) / Nielsen, David (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2018
136265-Thumbnail Image.png
Description
Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes

Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes & Silver 2011. PcTF variants have been constructed via TypeIIS assembly to further investigate this ability to reactive transgenes. Expression in mammalian cells was confirmed via fluorescence microscopy and red fluorescent protein (RFP) expression in cell lysate. Examination of any variation in conferment of binding strength of homologous Polycomb chromodomains (PCDs) to its trimethylated lysine residue target on histone three (H3K27me3) was investigated using a thermal shift assay. Results indicate that PcTF may not be a suitable protein for surveying with SYPRO Orange, a dye that produces a detectable signal when exposed to the hydrophobic domains of the melting protein. A cell line with inducible silencing of a chemiluminescent protein was used to determine the effects PcTF variants had on gene reactivation. Results show down-regulation of the target reporter gene. We propose this may be due to PcTF not binding to its target; this would cause PcTF to deplete transcriptional machinery in the nucleus. Alternatively, the CMV promoter could be sequestering transcriptional machinery in its hyperactive transcription of PcTF leading to widespread down-regulation. Finally, the activation domain used may not be appropriate for this cell type. Future PcTF variants will address these hypotheses by including multiple Polycomb chromodomains (PCDs) to alter the binding dynamics of PcTF to its target, and by incorporating alternative promoters and activation domains.
ContributorsGardner, Cameron Lee (Author) / Haynes, Karmella (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133856-Thumbnail Image.png
Description
Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to

Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to demonstrate reliable regulators which are programmable and specific, yet also allow for a high dynamic range of control. Inspired by the characteristics of the RNA toehold switch in E. coli, this project attempts utilize artificial introns and complementary trans-acting RNAs for gene regulation in a eukaryote host, S. cerevisiae. Following modification to an artificial intron, splicing control with RNA hairpins was demonstrated. Temperature shifts led to increased protein production likely due to increased splicing due to hairpin loosening. Progress is underway to demonstrate trans-acting RNA interaction to control splicing. With continued development, we hope to provide a programmable, specific, and effective means for translational gene regulation in S. cerevisae.
ContributorsDorr, Brandon Arthur (Author) / Wang, Xiao (Thesis director) / Green, Alexander (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136851-Thumbnail Image.png
Description
Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported

Morphine is a commonly used analgesic in pain management. Opioid administration to a patient after surgery, such as spinal decompression surgery, can lead to adverse side effects. To demonstrate these adverse side effects could be decreased we created a model of how morphine and its metabolites are transported and excreted from the body. Using the of morphine and a standard compartment approach this thesis aimed at projecting pharmacokinetics trends of morphine overtime. A Matlab compartment model predicting the transport of morphine through the body can contribute to a better understanding of the concentrations at the systemic level, specifically with respect to a CSF, and what happens when you compare an intravenous injection to a local delivery. Other studies and models commonly utilized patient data over small periods of time2,3,5. An extended period of time will provide information into morphine’s time course after surgery. This model focuses on a compartmentalization of the major organs and the use of a simple Mechalis-Menten enzyme kinetics for the metabolites in the liver. Our results show a CSF concentration of about 1.086×〖10〗^(-12) nmol/L in 6 weeks and 1.0097×〖10〗^(-12) nmol/L in 12 weeks. The concentration profiles in this model are similar to what was expected. The implications of this suggest that patients who reported effects of morphine paste, a locally administered opioid, weeks after the surgery were due to other reasons. In creating a model we can determine important variables and dosage information. This information allows for a greater understanding of what is happening in the body and how to improve surgical outcomes. We propose this study has implications in general research in the pharmacokinetics and dynamics of pharmacology through the body.
ContributorsJacobs, Danielle Renee (Author) / Caplan, Michael (Thesis director) / Giers, Morgan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133517-Thumbnail Image.png
Description
Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002 to 2006 are due to TBI [8]. The brain's natural defense, the Blood Brain Barrier (BBB), prevents the entry of most substances into the brain through the blood stream, including medicines administered to treat TBI [11]. TBI may cause the breakdown of the BBB, and may result in increased permeability, providing an opportunity for NPs to enter the brain [3,4]. Dr. Stabenfeldt's lab has previously established that intravenously injected nanoparticles (NP) will accumulate near the injury site after focal brain injury [4]. The current project focuses on confirmation of the accumulation or extravasation of NPs after brain injury using 2-photon microscopy. Specifically, the project used controlled cortical impact injury induced mice models that were intravenously injected with 40nm NPs post-injury. The MATLAB code seeks to analyze the brain images through registration, segmentation, and intensity measurement and evaluate if fluorescent NPs will accumulate in the extravascular tissue of injured mice models. The code was developed with 2D bicubic interpolation, subpixel image registration, drawn dimension segmentation and fixed dimension segmentation, and dynamic image analysis. A statistical difference was found between the extravascular tissue of injured and uninjured mouse models. This statistical difference proves that the NPs do extravasate through the permeable cranial blood vessels in injured cranial tissue.
ContributorsIrwin, Jacob Aleksandr (Author) / Stabenfeldt, Sarah (Thesis director) / Bharadwaj, Vimala (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154524-Thumbnail Image.png
Description
This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first

This dissertation focuses on the biosynthetic production of aromatic fine chemicals in engineered Escherichia coli from renewable resources. The discussed metabolic pathways take advantage of key metabolites in the shikimic acid pathway, which is responsible for the production of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. For the first time, the renewable production of benzaldehyde and benzyl alcohol has been achieved in recombinant E. coli with a maximum titer of 114 mg/L of benzyl alcohol. Further strain development to knockout endogenous alcohol dehydrogenase has reduced the in vivo degradation of benzaldehyde by 9-fold, representing an improved host for the future production of benzaldehyde as a sole product. In addition, a novel alternative pathway for the production of protocatechuate (PCA) and catechol from the endogenous metabolite chorismate is demonstrated. Titers for PCA and catechol were achieved at 454 mg/L and 630 mg/L, respectively. To explore potential routes for improved aromatic product yields, an in silico model using elementary mode analysis was developed. From the model, stoichiometric optimums maximizing both product-to-substrate and biomass-to-substrate yields were discovered in a co-fed model using glycerol and D-xylose as the carbon substrates for the biosynthetic production of catechol. Overall, the work presented in this dissertation highlights contributions to the field of metabolic engineering through novel pathway design for the biosynthesis of industrially relevant aromatic fine chemicals and the use of in silico modelling to identify novel approaches to increasing aromatic product yields.
ContributorsPugh, Shawn (Author) / Nielsen, David (Thesis advisor) / Dai, Lenore (Committee member) / Torres, Cesar (Committee member) / Lind, Mary Laura (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016