Matching Items (21)

134487-Thumbnail Image.png

Monatomic Gas Effects on Brayton Cycle Propulsion and Power Systems

Description

Monatomic gases are ideal working mediums for Brayton cycle systems due to their favorable thermodynamic properties. Closed Brayton cycle systems make use of these monatomic gases to increase system performance

Monatomic gases are ideal working mediums for Brayton cycle systems due to their favorable thermodynamic properties. Closed Brayton cycle systems make use of these monatomic gases to increase system performance and thermal efficiency. Open Brayton cycles, on the other hand, operate with primarily diatomic and polyatomic gases from air and combustion products, which have less favorable properties. The focus of this study is to determine if monatomic gases can be utilized in an open Brayton cycle system, in a way that increases the overall performance, but is still cost effective.
Two variations on open cycle Brayton systems were analyzed, consisting of an “airborne” thrust producing propulsion system, and a “ground-based” power generation system. Both of these systems have some mole fraction of He, Ne, or Ar injected into the flow path at the inlet, and some fraction of monatomic gas recuperated and at the nozzle exit to be re-circulated through the system. This creates a working medium of an air-monatomic gas mixture before the combustor, and a combustion products-monatomic gas mixture after combustor. The system’s specific compressor work, specific turbine work, specific net power output, and thermal efficiency were analyzed for each case. The most dominant metric for performance is the thermal efficiency (η_sys), which showed a significant increase as the mole fraction of monatomic gas increased for all three gas types. With a mole fraction of 0.15, there was a 2-2.5% increase in the airborne system, and a 1.75% increase of the ground-based system. This confirms that “spiking” any open Brayton system with monatomic gas will lead to an increase in performance. Additionally, both systems showed an increase in compressor and turbine work for a set temperature difference with He and Ne, which can additionally lead to longer component lifecycles with less frequent maintenance checks.
The cost analysis essentially compares the operating cost of a standard system with the operating cost of the monatomic gas “spiked” system, while keeping the internal mass flow rate and total power output the same. This savings is denoted as a percent of the standard system with %NCS. This metric lumps the cost ratio of the monatomic gas and fuel (MGC/FC) with the fraction of recuperated monatomic gas (RF) into an effective cost ratio that represents the cost per second of monatomic gas injected into the system. Without recuperation, the results showed there is no mole fraction of any monatomic gas type that yields a positive %NCS for a reasonable range of current MGC/FC values. Integrating recuperation machinery in an airborne system is hugely impractical, effectively meaning that the use of monatomic gas in this case is not feasible. For a ground-based system on the other hand, recuperation is much more practical. The ground-based system showed that a RF value of at least 50% for He, 89% for Ne, and 94% for Ar is needed for positive savings. This shows that monatomic gas could theoretically be used cost effectively in a ground-based, power-generating open Brayton system. With an injected monatomic gas mole fraction of 0.15, and full 100% recuperation, there is a net cost savings of about 3.75% in this ground-based system.

Contributors

Agent

Created

Date Created
  • 2017-05

130973-Thumbnail Image.png

Coffee Can Radar Antenna Redesign for SAR Applications

Description

The purpose of this project is to analyze the MIT OpenCourseWare coffee can radar design and modify it to be better suited for drone based synthetic aperture radar (SAR) applications

The purpose of this project is to analyze the MIT OpenCourseWare coffee can radar design and modify it to be better suited for drone based synthetic aperture radar (SAR) applications while maintaining the low-cost aspect of the original design. The MIT coffee can radar can function as a ranged radar, a Doppler radar, or as SAR. Through simulations and research, the suggestions for how to modify the radar resulted in swapping the coffee can monopole antennas for patch antenna arrays or helical ordinary end-fire antennas, adding an Arduino for automatic recording of output pulses, and switching from a breadboard construction to a PCB to shrink form factor and keep costs and construction time low.

Contributors

Agent

Created

Date Created
  • 2020-12

131645-Thumbnail Image.png

Microbially Induced Desaturation and Precipitation (MIDP) Pressure Contours

Description

This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction

This thesis is part of a larger research project, conducted by Elizabeth Stallings Young, which aims to improve understanding about the factors controlling the process of MIDP and the interaction between the biochemical reactions and the hydrological properties of soils treated with MIDP. Microbially Induced Desaturation and Precipitation (MIDP) is a bio-geotechnical process by which biogenic gas production and calcite mineral bio-cementation are induced in the pore space between the soil particles, which can mitigate earthquake induced liquefaction (Kavazanjian et al. 2015). In this process substrates are injected which stimulate indigenous nitrate reducing bacteria to produce nitrogen and carbon dioxide gas, while precipitating calcium carbonate minerals. The biogenic gas production has been shown to dampen pore pressure build up under dynamic loading conditions and significantly increase liquefaction resistance (Okamura and Soga 2006), while the precipitation of calcium carbonate minerals cements adjacent granular particles together. The objective of this thesis was to analyze the recorded pore pressure development as a result of biogenic gas formation and migration, over the entire two-dimensional flow field, by generating dynamic pressure contour plots, using MATLAB and ImageJ software. The experiment was run in a mesoscale tank that was approximately 114 cm tall, 114 cm wide and 5.25 cm thick. Substrate was flushed through the soil body and the denitrifying reaction occurred, producing gas and correspondingly, pressure. The pressure across the tank was recorded with pore pressure sensors and was loaded into a datalogger. This time sensitive data file was loaded into a MATLAB script, MIDPCountourGen.m, to create pressure contours for the tank. The results from this thesis include the creation of MIDPContourGen.m and a corresponding How-To Guide and pore pressure contours for the F60 tank. This thesis concluded that the MIDP reaction takes a relatively short amount of time and that the residual pressure in the tank after the water flush on day 17 offers a proof of effect of the MIDP reaction.

Contributors

Created

Date Created
  • 2020-05

135434-Thumbnail Image.png

Computations on Parameterized Surfaces with Chebfun2

Description

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact that smooth functions can be represented very efficiently by polynomial interpolation at Chebyshev points or by trigonometric interpolation at equispaced points for periodic functions. More recently, the system has been extended to handle bivariate functions and vector fields. These two new classes of objects are called Chebfun2 and Chebfun2v, respectively. We will show that Chebfun2 and Chebfun2v, and can be used to accurately and efficiently perform various computations on parametric surfaces in two or three dimensions, including path trajectories and mean and Gaussian curvatures. More advanced surface computations such as mean curvature flows are also explored. This is also the first work to use the newly implemented trigonometric representation, namely Trigfun, for computations on surfaces.

Contributors

Created

Date Created
  • 2016-05

133735-Thumbnail Image.png

Application of Optimal Control for Pharmacokinetics/Pharmacodynamics

Description

Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when

Pharmacokinetics describes the movement and processing of a drug in a body, while Pharmacodynamics describes the drug's effect on a given subject. Pharmacokinetic/Pharmacodynamic(Pk/Pd) models have become a fundamental tool when predicting bacterial behavior and drug development. In November of 2009, Katsube et al. published their paper detailing their Pk/Pd model for the drug Doripenem and the bacteria P. aeruginosa. In their paper, they determined that there is a dependent relationship between the drug's effectiveness and the dosing strategy of the drug. Therefore, this thesis has applied optimal control in order to optimize the drug's effectiveness, while not burdening the subject with the side effects of the drug. Optimal Control is a mathematical tool used to balance two competing factors. As a result, it has become a useful tool used to make decisions involving complex behavior. By using Optimal Control, the model will maximize the drug's effect on the bacterial population of P. aeruginosa, while minimizing the drug concentration of Doripenem. In doing so, our research will enable doctors and clinicians to maximize a drug's effectiveness on the body, while minimizing side effects.

Contributors

Agent

Created

Date Created
  • 2018-05

137108-Thumbnail Image.png

FOURFUN: A new system for automatic computations using Fourier expansions

Description

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that are accurate to close to machine precision. Common MATLAB functions have been overloaded to keep the syntax of the Fourfun class as consistent as possible with the general MATLAB syntax. We show that the system can be used to efficiently solve several differential equations. Comparisons with Chebfun, a similar system based on Chebyshev polynomial approximations, are provided.

Contributors

Created

Date Created
  • 2014-05

148322-Thumbnail Image.png

Predicting the Binding Interactions of TNFR2 and PD-L1 on LT-ɑ, TRAF2, and CD80

Description

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions

The field of biomedical research relies on the knowledge of binding interactions between various proteins of interest to create novel molecular targets for therapeutic purposes. While many of these interactions remain a mystery, knowledge of these properties and interactions could have significant medical applications in terms of understanding cell signaling and immunological defenses. Furthermore, there is evidence that machine learning and peptide microarrays can be used to make reliable predictions of where proteins could interact with each other without the definitive knowledge of the interactions. In this case, a neural network was used to predict the unknown binding interactions of TNFR2 onto LT-ɑ and TRAF2, and PD-L1 onto CD80, based off of the binding data from a sampling of protein-peptide interactions on a microarray. The accuracy and reliability of these predictions would rely on future research to confirm the interactions of these proteins, but the knowledge from these methods and predictions could have a future impact with regards to rational and structure-based drug design.

Contributors

Agent

Created

Date Created
  • 2021-05

135758-Thumbnail Image.png

An Image Analysis Environment for Species Identification of Food Contaminating Beetles

Description

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection

Food safety is vital to the well-being of society; therefore, it is important to inspect food products to ensure minimal health risks are present. A crucial phase of food inspection is the identification of foreign particles found in the sample, such as insect body parts. The presence of certain species of insects, especially storage beetles, is a reliable indicator of possible contamination during storage and food processing. However, the current approach to identifying species is visual examination by human analysts; this method is rather subjective and time-consuming. Furthermore, confident identification requires extensive experience and training. To aid this inspection process, we have developed in collaboration with FDA analysts some image analysis-based machine intelligence to achieve species identification with up to 90% accuracy. The current project is a continuation of this development effort. Here we present an image analysis environment that allows practical deployment of the machine intelligence on computers with limited processing power and memory. Using this environment, users can prepare input sets by selecting images for analysis, and inspect these images through the integrated pan, zoom, and color analysis capabilities. After species analysis, the results panel allows the user to compare the analyzed images with referenced images of the proposed species. Further additions to this environment should include a log of previously analyzed images, and eventually extend to interaction with a central cloud repository of images through a web-based interface. Additional issues to address include standardization of image layout, extension of the feature-extraction algorithm, and utilizing image classification to build a central search engine for widespread usage.

Contributors

Agent

Created

Date Created
  • 2016-05

133517-Thumbnail Image.png

Image Analysis for Registration, Segmentation, and Intensity Measurement of 2-Photon Microscope Images using MATLAB

Description

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According

Traumatic brain injury (TBI) is a major concern in public health due to its prevalence and effect. Every year, about 1.7 million TBIs are reported [7]. According to the According to the Centers for Disease Control and Prevention (CDC), 5.5% of all emergency department visits, hospitalizations, and deaths from 2002 to 2006 are due to TBI [8]. The brain's natural defense, the Blood Brain Barrier (BBB), prevents the entry of most substances into the brain through the blood stream, including medicines administered to treat TBI [11]. TBI may cause the breakdown of the BBB, and may result in increased permeability, providing an opportunity for NPs to enter the brain [3,4]. Dr. Stabenfeldt's lab has previously established that intravenously injected nanoparticles (NP) will accumulate near the injury site after focal brain injury [4]. The current project focuses on confirmation of the accumulation or extravasation of NPs after brain injury using 2-photon microscopy. Specifically, the project used controlled cortical impact injury induced mice models that were intravenously injected with 40nm NPs post-injury. The MATLAB code seeks to analyze the brain images through registration, segmentation, and intensity measurement and evaluate if fluorescent NPs will accumulate in the extravascular tissue of injured mice models. The code was developed with 2D bicubic interpolation, subpixel image registration, drawn dimension segmentation and fixed dimension segmentation, and dynamic image analysis. A statistical difference was found between the extravascular tissue of injured and uninjured mouse models. This statistical difference proves that the NPs do extravasate through the permeable cranial blood vessels in injured cranial tissue.

Contributors

Agent

Created

Date Created
  • 2018-05

133531-Thumbnail Image.png

Algorithmic Prediction of Binding Sites of TNFα/TNFR2 and PD-1/PD-L1

Description

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally

Predicting the binding sites of proteins has historically relied on the determination of protein structural data. However, the ability to utilize binding data obtained from a simple assay and computationally make the same predictions using only sequence information would be more efficient, both in time and resources. The purpose of this study was to evaluate the effectiveness of an algorithm developed to predict regions of high-binding on proteins as it applies to determining the regions of interaction between binding partners. This approach was applied to tumor necrosis factor alpha (TNFα), its receptor TNFR2, programmed cell death protein-1 (PD-1), and one of its ligand PD-L1. The algorithms applied accurately predicted the binding region between TNFα and TNFR2 in which the interacting residues are sequential on TNFα, however failed to predict discontinuous regions of binding as accurately. The interface of PD-1 and PD-L1 contained continuous residues interacting with each other, however this region was predicted to bind weaker than the regions on the external portions of the molecules. Limitations of this approach include use of a linear search window (resulting in inability to predict discontinuous binding residues), and the use of proteins with unnaturally exposed regions, in the case of PD-1 and PD-L1 (resulting in observed interactions which would not occur normally). However, this method was overall very effective in utilizing the available information to make accurate predictions. The use of the microarray to obtain binding information and a computer algorithm to analyze is a versatile tool capable of being adapted to refine accuracy.

Contributors

Agent

Created

Date Created
  • 2018-05