Matching Items (3)
Filtering by

Clear all filters

149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
136945-Thumbnail Image.png
Description
This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often

This thesis explores the task of creating industry-based marketing materials to assist academic programs in their recruitment of high school and community college students. With consistent reductions to public university budgets there is an increasing pressure on academic programs to raise their student enrollment figures, as student count is often cited as one of the most important statistics when making budget decisions. Many academic programs are ill-equipped to perform this task, however, as their personnel are not trained as recruiters, but rather as professors and industry professionals; furthermore, the university-level recruitment staff faces the impossible task of advertising every department's recruitment message. The Del E. Webb School of Construction has embarked upon a journey to create industry-based marketing materials to aid them in their recruitment efforts. Construction management (CM) has traditionally been viewed as a technology major relegated to vocational students and those not fit for baccalaureate programs. In recent years that perception has changed, however, as the industry has become increasingly complex and CM programs actively work to recruit students. In an attempt to increase that recruitment, the Del E. Webb School has created marketing materials that are signature to the program featuring the world's most widely-used building material, concrete, to create a keepsake for prospective students. This keepsake comes in the form of concrete replicas of the new ASU Pitchfork logo. These pitchforks are small and designed to be mass produced so that they can be handed out at recruitment events either on campus or in local schools. The Del E. Webb School had previously experimented with flexible rubber molds and flowable mixtures, such that the models could be easily cast and rapidly demolded and reset for casting. There were issues, however, as those pitchforks did not meet desired level of quality and were difficult to reproduce. This thesis thus describes an experimental program examining different casting and demolding regimens in an attempt to find the optimal way to create the pitchforks on a consistent basis. Following this, an operations manual for how to create the pitchforks was created in order to ensure that successive cohorts of construction students can reproduce the pitchforks in preparation for the School's annual recruitment events.
ContributorsErnzen, John Alexander (Author) / Wiezel, Avi (Thesis director) / Rogers, James (Committee member) / Barrett, The Honors College (Contributor) / Division of Educational Leadership and Innovation (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
155142-Thumbnail Image.png
Description
ABSTRACT

This study examines the methodology for converting protected, permissive, and protected/permissive left-turn operation to flashing yellow arrow left-turn operation. This study addresses construction-related considerations, including negative offsets, lateral traffic signal head position, left-turn accident rates, crash modification factors and crash reductions factors. A total of 85 intersections in Glendale, Arizona

ABSTRACT

This study examines the methodology for converting protected, permissive, and protected/permissive left-turn operation to flashing yellow arrow left-turn operation. This study addresses construction-related considerations, including negative offsets, lateral traffic signal head position, left-turn accident rates, crash modification factors and crash reductions factors. A total of 85 intersections in Glendale, Arizona were chosen for this study. These intersections included 45 “arterial to arterial” intersections (a major road intersecting with a major road) and 40 “arterial to collector” intersections (a major road intersecting with a minor road).

This thesis is a clinical study of the field conversion to flashing yellow arrow traffic signals and is not a study of the merits of flashing yellow arrow operation. This study included six categories: 1. High accident intersections (for inclusion in Highway Safety Improvement Program (HSIP) funding); 2. Signal head modifications only; 3. Signal head replacement with median modifications; 4. Signal head and mast arm replacement; 5. Signal head, signal pole and mast arm replacement; and 6. Intersections where flashing yellow arrow operation is not recommended. Compliance with the Manual on Uniform Traffic Control Devices (MUTCD) played a large part in determining conversion costs because the standard for lateral position of the left-turn traffic signal greatly influenced the construction effort. Additionally, the left-turning vehicle’s sight distance factored into cost considerations. It’s important for agencies to utilize this study to understand all of the financial commitments and construction requirements for conversion to flashing yellow arrow operation, and ultimately to appreciate that the process is not purely a matter of swapping traffic signal heads.
ContributorsChambers, Susan Elizabeth (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Thesis advisor) / Hartig, Daniel (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2016