Matching Items (4)
Filtering by

Clear all filters

152749-Thumbnail Image.png
Description

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the

ABSTRACT Pre-treated crumb rubber technologies are emerging as a new method to produce asphalt rubber mixtures in the field. A new crumb rubber modifier industrially known as "RuBind" is one such technology. RuBindTM is a "Reacted and Activated Rubber" (RAR) that acts like an elastomeric asphalt extender to improve the engineering properties of the binder and mixtures. It is intended to be used in a dry mixing process with the purpose of simplifying mixing at the asphalt plant. The objectives of this research study were to evaluate the rheological and aging properties of binders modified with RuBindTM and its compatibility with warm mix technology. Two binders were used for this study: Performance Grade (PG) 70-10 and PG 64-22, both modified with 25% by weight of asphalt binder. Laboratory test included: penetration, softening point, viscosity, Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR). Tests were conducted under original, short and long -term aging conditions. Observations from the test results indicated that there is a better improvement when RuBindTM is added to a softer binder, in this case a PG 64-22. For short-term aging, the modified binder showed a similar aging index compared to the control. However, long term aging was favorable for the modified binders. The DSR results showed that the PG 64-22 binder high temperature would increase to 82 °C, and PG 70-10 would be increased to 76 °C, both favorable results. The intermediate temperatures also showed an improvement in fatigue resistance (as measured by the Superpave PG grading parameter |G*|sinä). Test results at low temperatures did not show a substantial improvement, but the results were favorable showing reduced stiffness with the addition of RuBindTM. The evaluation of warm mix additive using EvothermTM confirmed the manufacturer information that the product should have no negative effects on the binder properties; that is the modified binder can be used in a warm mix process. These results were encouraging and the recommendation was to continue with a follow up study with mixture tests using the RuBindTM modified binders.

ContributorsMedina, Jose R. (Jose Roberto) (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Shane (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
149708-Thumbnail Image.png
Description
Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a

Semiconductor manufacturing facilities are very complex and capital intensive in nature. During the lifecycle of these facilities various disciplines come together, generate and use a tremendous amount of building and process information to support various decisions that enable them to successfully design, build and sustain these advanced facilities. However, a majority of the information generated and processes taking place are neither integrated nor interoperable and result in a high degree of redundancy. The objective of this thesis is to build an interoperable Building Information Model (BIM) for the Base-Build and Tool Installation in a semiconductor manufacturing facility. It examines existing processes and data exchange standards available to facilitate the implementation of BIM and provides a framework for the development of processes and standards that can help in building an intelligent information model for a semiconductor manufacturing facility. To understand the nature of the flow of information between the various stakeholders the flow of information between the facility designer, process tool manufacturer and tool layout designer is examined. An information model for the base build and process tool is built and the industry standards SEMI E6 and SEMI E51 are used as a basis to model the information. It is found that applications used to create information models support interoperable industry standard formats such as the Industry Foundation Classes (IFC) and ISO 15926 in a limited manner. A gap analysis has revealed that interoperability standards applicable to the semiconductor manufacturing industry such as the IFC and ISO15926 need to be expanded to support information transfers unique to the industry. Information modeling for a semiconductor manufacturing facility is unique in that it is a process model (Process Tool Information Model) within a building model (Building Information Model), each of them supported more robustly by different interoperability standards. Applications support interoperability data standards specific to the domain or industry they serve but information transfers need to occur between the various domains. To facilitate flow of information between the different domains it is recommended that a mapping of the industry standards be undertaken and translators between them be developed for business use.
ContributorsPindukuri, Shruthi (Author) / Chasey, Allan D (Thesis advisor) / Wiezel, Avi (Committee member) / Mamlouk, Michael (Committee member) / Arizona State University (Publisher)
Created2011
155142-Thumbnail Image.png
Description
ABSTRACT

This study examines the methodology for converting protected, permissive, and protected/permissive left-turn operation to flashing yellow arrow left-turn operation. This study addresses construction-related considerations, including negative offsets, lateral traffic signal head position, left-turn accident rates, crash modification factors and crash reductions factors. A total of 85 intersections in Glendale, Arizona

ABSTRACT

This study examines the methodology for converting protected, permissive, and protected/permissive left-turn operation to flashing yellow arrow left-turn operation. This study addresses construction-related considerations, including negative offsets, lateral traffic signal head position, left-turn accident rates, crash modification factors and crash reductions factors. A total of 85 intersections in Glendale, Arizona were chosen for this study. These intersections included 45 “arterial to arterial” intersections (a major road intersecting with a major road) and 40 “arterial to collector” intersections (a major road intersecting with a minor road).

This thesis is a clinical study of the field conversion to flashing yellow arrow traffic signals and is not a study of the merits of flashing yellow arrow operation. This study included six categories: 1. High accident intersections (for inclusion in Highway Safety Improvement Program (HSIP) funding); 2. Signal head modifications only; 3. Signal head replacement with median modifications; 4. Signal head and mast arm replacement; 5. Signal head, signal pole and mast arm replacement; and 6. Intersections where flashing yellow arrow operation is not recommended. Compliance with the Manual on Uniform Traffic Control Devices (MUTCD) played a large part in determining conversion costs because the standard for lateral position of the left-turn traffic signal greatly influenced the construction effort. Additionally, the left-turning vehicle’s sight distance factored into cost considerations. It’s important for agencies to utilize this study to understand all of the financial commitments and construction requirements for conversion to flashing yellow arrow operation, and ultimately to appreciate that the process is not purely a matter of swapping traffic signal heads.
ContributorsChambers, Susan Elizabeth (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Thesis advisor) / Hartig, Daniel (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2016
149502-Thumbnail Image.png
Description
Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt

Oxidative aging is an important factor in the long term performance of asphalt pavements. Oxidation and the associated stiffening can lead to cracking, which in turn can lead to the functional and structural failure of the pavement system. Therefore, a greater understanding of the nature of oxidative aging in asphalt pavements can potentially be of great importance in estimating the performance of a pavement before it is constructed. Of particular interest are the effects of aging on asphalt rubber pavements, due to the fact that, as a newer technology, few asphalt rubber pavement sections have been evaluated for their full service life. This study endeavors to shed some light on this topic. This study includes three experimental programs on the aging of asphalt rubber binders and mixtures. The first phase addresses aging in asphalt rubber binders and their virgin bases. The binders were subjected to various aging conditions and then tested for viscosity. The change in viscosity was analyzed and it was found that asphalt rubber binders exhibited less long term aging. The second phase looks at aging in a laboratory environment, including both a comparison of accelerated oxidative aging techniques and aging effects that occur during long term storage. Dynamic modulus was used as a tool to assess the aging of the tested materials. It was found that aging materials in a compacted state is ideal, while aging in a loose state is unrealistic. Results not only showed a clear distinction in aged versus unaged material but also showed that the effects of aging on AR mixes is highly dependant on temperature; lower temperatures induce relatively minor stiffening while higher temperatures promote much more significant aging effects. The third experimental program is a field study that builds upon a previous study of pavement test sections. Field pavement samples were taken and tested after being in service for 7 years and tested for dynamic modulus and beam fatigue. As with the laboratory aging, the dynamic modulus samples show less stiffening at low temperatures and more at higher temperatures. Beam fatigue testing showed not only stiffening but also a brittle behavior.
ContributorsReed, Jordan (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2010