Matching Items (7)
Filtering by

Clear all filters

136327-Thumbnail Image.png
Description
Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger,

Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger, Jordan, and Lande, 2015). The National Academy of Engineering has determined that leadership is a key quality for the engineer of the future (Clough, 2004). The Engineering Accreditation Commission has determined several necessary outcomes for engineering students that coincide with leadership roles (Engineering Accreditation Commission, 2012). Proactiveness, confidence, motivation, communication, coaching will be important skills for engineers so that they can effectively lead teams, adjust to change, and synthesize (Ahn, Cox, London, Cekic, and Zhu, 2014). In National Academy of Engineering's The Engineer of 2020 (Clough, 2004) future engineers are expected to be in position to influence "in the making of public policy and in the administration of government and industry." The Maker community offers a broad spectrum of individuals engaged in informal engineering and tinkering activities across multiple pathways (Foster, Wigner, Lande, and Jordan, 2015). This study explores leadership using a theoretical framework of competing values (Quinn, 1988) (Zafft, Adams, and Matkin, 2009) including relating to people, managing processes, leading change, and producing results. The study relies upon artifact elicitation (based on photo elicitation (Harper, 2002)) with 40 of these Makers at four Maker Faires in the United States. The artifact elicitation interviews were conducted at the Maker Faires in front of participants' inventions, where the Makers were asked to describe the invention and the process behind it. Using a theoretical framework of competing values (Quinn, 1988) (Quinn, Faerman, Thompson, and McGrath, 1990) and through parallel inductive-deductive analysis, the emergent themes among our sample of Makers include that they express leadership qualities of (1) innovators \u2014 they utilize different skillsets to develop unique products and solutions; (2) monitors \u2014 they evaluate projects and respond to results; (3) directors \u2014 they set goals and expectations of their projects and processes; and (4) producers \u2014 they are determined and possess a personal drive. From the findings a call to action is made on implementing leadership lessons in the engineering classroom.
ContributorsOplinger, James Logan (Author) / Lande, Micah (Thesis director) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
133414-Thumbnail Image.png
Description
Adaptive expertise is a model of learning that posits two dimensions of development: efficiency and innovation. The mindset of an adaptive expert will serve any engineer by drawing upon diverse experiences to develop novel solutions to problems. Their mindset is based in lifelong learning, characterized by applying past experience to

Adaptive expertise is a model of learning that posits two dimensions of development: efficiency and innovation. The mindset of an adaptive expert will serve any engineer by drawing upon diverse experiences to develop novel solutions to problems. Their mindset is based in lifelong learning, characterized by applying past experience to current design challenges. Solution design requires a process, and a breadth of experience is among the adaptive expert's greatest tools in identifying the approach to take in an unfamiliar situation. The fluidity and agility of their mind allows them to work effectively throughout their career in technical design, as the situation of an engineer's design work can vary drastically over the course of time. This paper describes a study on an innovative junior-level electrical and robotic systems project course taught at a large southwestern university that encourages students to develop adaptive expertise in the context of real-world design projects. By fabricating prototypes, students learn strategies for troubleshooting and technical design, and iterations of the part demand reflection on previous design thinking. This study seeks to answer the following research questions: (1) How does user-centered design stimulate abstractive design thinking? (2) How does fabrication of prototypes stimulate active design thinking? And (3) How is the classroom culture enabling engineering design in the optimal adaptability corridor? Critical incident interviews were conducted with stakeholders in the course, and a thematic analysis of the transcripts conducted. Results show that this project-based curriculum fosters adaptive expertise by stimulating both abstractive and active design thinking. This provides a framework for practicing adaptive design thinking in classrooms. Disseminating these findings to curriculum designers will encourage more engaging, effective classes that graduate adaptive experts.
ContributorsLarson, James Robert (Author) / Jordan, Shawn (Thesis director) / Lande, Micah (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134378-Thumbnail Image.png
Description
Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many

Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many other institutions, has long since provided career support and promoted internships as an excellent work experience option before graduation. The decision to formalize a cooperative education program speaks to a need for a more rigorous path to work experience for engineering students. This paper is an investigation into the barriers and enablers behind a young cooperative education program. These results indicate that while students do benefit from the program, growth of the program may be tied to creating a meaningful distinction between cooperative education and other learning opportunities.
ContributorsGolka, Margaret (Author) / Jordan, Shawn (Thesis director) / Morrell, Darryl (Committee member) / W. P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133057-Thumbnail Image.png
Description
The purpose of this paper is to develop an understanding of Navajo students' perspectives on how engineering can be used to improve life in their own communities on the Navajo reservation. Branching off an existing study that aims to develop a culturally-contextualized engineering design curriculum for middle schools in the

The purpose of this paper is to develop an understanding of Navajo students' perspectives on how engineering can be used to improve life in their own communities on the Navajo reservation. Branching off an existing study that aims to develop a culturally-contextualized engineering design curriculum for middle schools in the Navajo Nation, this research focuses on a curriculum module entitled, "Future Chapter Presidents". This module is inspired by the Future City Competition where middle school students are tasked with imagining a better future. To make "Future Chapter Presidents" more culturally-relevant, students are instead tasked with proposing solutions that will improve life on the reservation. This module emphasizes engineering design alongside teaching Navajo Nation government standards by having students in the class run for a position in their local government. Students are prompted with creating a campaign poster that showcases their proposed solutions directed at their own communities. In order to analyze students' perspectives and understanding of how engineering can be used to improve life on the reservation, thematic analysis is used to study each individual poster. Meanwhile, because the researchers conducting this study are not Navajo, Tribal Critical Race Theory (Brayboy, 2006) was applied to ensure that the content of the posters are interpreted from an Indigenous lens. The results of this study can be used to inform future curriculum development for engineering design modules in the Navajo Nation and expand upon existing literature that provides understanding of how Navajo students experience and understand engineering in the context of their culture.
ContributorsPangan, Tyrine Jamella Duenas (Author) / Jordan, Shawn (Thesis director) / Foster, Christina (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154443-Thumbnail Image.png
Description
This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM).

This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM). The study was directed by two research questions: (1) What are the lived and told stories of Native women in engineering and technology who are leading initiatives to improve their Native communities and (2) How do Native women’s understandings of their identities influence their work and acts of leadership? The study employed narrative inquiry as the methodological framework and was guided by theoretical frameworks of identities as constructed, multiple, and intersectional (Crenshaw, 1989; Tajfel & Turner, 1979), hybridity, and “third spaces” (Bhabha, 2012). The inquiry was also informed by feminist theories of Native scholars (Green, 1983; Kidwell, 1978) and engineering education (Beddoes & Borrego, 2011; Riley, Pawley, Tucker, & Catalano, 2009). The narrative analysis presented three narratives, based upon interviews, field notes, observations, and documents: (1) the story of a Navajo woman working within a large technical corporation (Jaemie); (2) the story of an Akimel O’odham-Mexican woman working within a tribally-owned technical business (Mia); and (3) the story of a Navajo woman growing her own technical business (Catherine). The narratives revealed a series of impactful transitions that enabled Jaemie, Mia, and Catherine to work and lead in engineering and technology. The transitions revolved around themes of becoming professionals, encountering and overcoming hardship, seeking to connect and contribute to Natives through work, leading change for their Native communities, and advancing their professional selves and their Native communities. Across the transitions, a transformation emerged from cultural navigation to leadership for the creation of new hybrid spaces that represented innovative sites of opportunity for Native communities. The strength of the Native spaces enabled Jaemie, Mia, and Catherine to leverage their identities as Native women within the global context of engineering and technology. The narratives denote the power of story by contributing the depth and richness of lived realities in engineering and technology.
ContributorsFoster, Christina Hobson (Author) / Jordan, Shawn (Thesis advisor) / Fixico, Donald (Committee member) / Lande, Micah (Committee member) / McKenna, Anna (Committee member) / Arizona State University (Publisher)
Created2016
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05