Matching Items (18)
Filtering by

Clear all filters

133882-Thumbnail Image.png
Description
Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the

Based on James Marcia's theory, identity development in youth is the degree to which one has explored and committed to a vocation [1], [2]. During the path to an engineering identity, students will experience a crisis, when one's values and choices are examined and reevaluated, and a commitment, when the outcome of the crisis leads the student to commit to becoming an engineer. During the crisis phase, students are offered a multitude of experiences to shape their values and choices to influence commitment to becoming an engineering student. Student's identities in engineering are fostered through mentoring from industry, alumni, and peer coaching [3], [4]; experiences that emphasize awareness of the importance of professional interactions [5]; and experiences that show creativity, collaboration, and communication as crucial components to engineering. Further strategies to increase students' persistence include support in their transition to becoming an engineering student, education about professional engineers and the workplace [6], and engagement in engineering activities beyond the classroom. Though these strategies are applied to all students, there are challenges students face in confronting their current identity and beliefs before they can understand their value to society and achieve personal satisfaction. To understand student's progression in developing their engineering identity, first year engineering students were surveyed at the beginning and end of their first semester. Students were asked to rate their level of agreement with 22 statements about their engineering experience. Data included 840 cases. Items with factor loading less than 0.6 suggesting no sufficient explanation were removed in successive factor analysis to identify the four factors. Factor analysis indicated that 60.69% of the total variance was explained by the successive factors. Survey questions were categorized into three factors: engineering identity as defined by sense of belonging and self-efficacy, doubts about becoming an engineer, and exploring engineering. Statements in exploring engineering indicated student awareness, interest and enjoyment within engineering. Students were asked to think about whether they spent time learning what engineers do and participating in engineering activities. Statements about doubts about engineering to engineering indicated whether students had formed opinions about their engineering experience and had understanding about their environment. Engineering identity required thought in belonging and self-efficacy. Belonging statements called for thought about one's opinion in the importance of being an engineer, the meaning of engineering, an attachment to engineering, and self-identification as an engineer. Statements about self-efficacy required students to contemplate their personal judgement of whether they would be able to succeed and their ability to become an engineer. Effort in engineering indicated student willingness to invest time and effort and their choices and effort in their engineering discipline.
ContributorsNguyen, Amanda (Author) / Ganesh, Tirupalavanam (Thesis director) / Robinson, Carrie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136266-Thumbnail Image.png
Description
A concept found that students struggle with in statics and dynamics is free body diagrams. To capture the difficulties students have with this concept, faculty interviews were conducted to determine common errors seen in a classroom setting. The feedback was used to pull questions from a statics concept inventory focused

A concept found that students struggle with in statics and dynamics is free body diagrams. To capture the difficulties students have with this concept, faculty interviews were conducted to determine common errors seen in a classroom setting. The feedback was used to pull questions from a statics concept inventory focused on free body diagrams. Students who have passed statics and dynamics courses in their engineering degree were asked to participate in talk alouds to confirm the faculty input. The talk alouds provided first hand observations of the student thought process when they perform common errors in creating free body diagrams. The results highlighted that students commonly add forces that are not there or fail to only depict the external forces acting on the system in question. A professor describes the occurrence when students insist on adding forces that are not there as phantom forces. To remedy the idea of phantom forces, an intervention was proposed to be implemented into the classroom.
ContributorsTwet, Samantha Ann (Author) / Brunhaver, Samantha (Thesis director) / Lande, Micah (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
136327-Thumbnail Image.png
Description
Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger,

Makers are those who enjoy creating things and learning new skills, as well as interacting within a connected community (Doughtery, 2012). Through the analysis of Makers as part of a larger study (Jordan & Lande, 2013) a researcher had noticed the emergence of leadership traits within the Maker community (Oplinger, Jordan, and Lande, 2015). The National Academy of Engineering has determined that leadership is a key quality for the engineer of the future (Clough, 2004). The Engineering Accreditation Commission has determined several necessary outcomes for engineering students that coincide with leadership roles (Engineering Accreditation Commission, 2012). Proactiveness, confidence, motivation, communication, coaching will be important skills for engineers so that they can effectively lead teams, adjust to change, and synthesize (Ahn, Cox, London, Cekic, and Zhu, 2014). In National Academy of Engineering's The Engineer of 2020 (Clough, 2004) future engineers are expected to be in position to influence "in the making of public policy and in the administration of government and industry." The Maker community offers a broad spectrum of individuals engaged in informal engineering and tinkering activities across multiple pathways (Foster, Wigner, Lande, and Jordan, 2015). This study explores leadership using a theoretical framework of competing values (Quinn, 1988) (Zafft, Adams, and Matkin, 2009) including relating to people, managing processes, leading change, and producing results. The study relies upon artifact elicitation (based on photo elicitation (Harper, 2002)) with 40 of these Makers at four Maker Faires in the United States. The artifact elicitation interviews were conducted at the Maker Faires in front of participants' inventions, where the Makers were asked to describe the invention and the process behind it. Using a theoretical framework of competing values (Quinn, 1988) (Quinn, Faerman, Thompson, and McGrath, 1990) and through parallel inductive-deductive analysis, the emergent themes among our sample of Makers include that they express leadership qualities of (1) innovators \u2014 they utilize different skillsets to develop unique products and solutions; (2) monitors \u2014 they evaluate projects and respond to results; (3) directors \u2014 they set goals and expectations of their projects and processes; and (4) producers \u2014 they are determined and possess a personal drive. From the findings a call to action is made on implementing leadership lessons in the engineering classroom.
ContributorsOplinger, James Logan (Author) / Lande, Micah (Thesis director) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor)
Created2015-05
136249-Thumbnail Image.png
Description
Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State

Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State University holds a professional development workshop titled "Engineering Practices in the Secondary Science Classroom: Engineering Training for Grade 6-12 Math and Science School Teams". This workshop provides math and science teachers with the opportunity to either sustain existing engineering proficiency or be exposed to engineering design practices for the first time. To build teachers' proficiency with employing engineering design practices, they follow a two-day curriculum designed for application in both science and math classrooms as a conjoined effort. As of spring 2015, very little feedback has been received concerning the effectiveness of the ASU-ADE workshops. New feedback methods have been developed for future deployment as past and more informal immediate feedback from teachers and students was used to create preliminary changes in the workshop curriculum. In addition, basic laboratory testing has been performed to further link together engineering problem solving with experiments and computer modelling. In improving feedback and expanding available material, the curriculum was analyzed and improved to more effectively train teachers in engineering practices and implement these practices in their classrooms.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
133414-Thumbnail Image.png
Description
Adaptive expertise is a model of learning that posits two dimensions of development: efficiency and innovation. The mindset of an adaptive expert will serve any engineer by drawing upon diverse experiences to develop novel solutions to problems. Their mindset is based in lifelong learning, characterized by applying past experience to

Adaptive expertise is a model of learning that posits two dimensions of development: efficiency and innovation. The mindset of an adaptive expert will serve any engineer by drawing upon diverse experiences to develop novel solutions to problems. Their mindset is based in lifelong learning, characterized by applying past experience to current design challenges. Solution design requires a process, and a breadth of experience is among the adaptive expert's greatest tools in identifying the approach to take in an unfamiliar situation. The fluidity and agility of their mind allows them to work effectively throughout their career in technical design, as the situation of an engineer's design work can vary drastically over the course of time. This paper describes a study on an innovative junior-level electrical and robotic systems project course taught at a large southwestern university that encourages students to develop adaptive expertise in the context of real-world design projects. By fabricating prototypes, students learn strategies for troubleshooting and technical design, and iterations of the part demand reflection on previous design thinking. This study seeks to answer the following research questions: (1) How does user-centered design stimulate abstractive design thinking? (2) How does fabrication of prototypes stimulate active design thinking? And (3) How is the classroom culture enabling engineering design in the optimal adaptability corridor? Critical incident interviews were conducted with stakeholders in the course, and a thematic analysis of the transcripts conducted. Results show that this project-based curriculum fosters adaptive expertise by stimulating both abstractive and active design thinking. This provides a framework for practicing adaptive design thinking in classrooms. Disseminating these findings to curriculum designers will encourage more engaging, effective classes that graduate adaptive experts.
ContributorsLarson, James Robert (Author) / Jordan, Shawn (Thesis director) / Lande, Micah (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137399-Thumbnail Image.png
Description
The civil engineering curriculum includes the engineering fields of environmental, geotechnical, hydrology, structural, and transportation. A particular focus on the structural engineering curriculum outline involves courses in mathematics, engineering mechanics, structural analysis, and structural design. The core structural analysis and design course at Arizona State University (CEE 321) is a

The civil engineering curriculum includes the engineering fields of environmental, geotechnical, hydrology, structural, and transportation. A particular focus on the structural engineering curriculum outline involves courses in mathematics, engineering mechanics, structural analysis, and structural design. The core structural analysis and design course at Arizona State University (CEE 321) is a transition course to connect realistic structural design and analysis concepts to an engineering foundation created by the first and second year mathematics and mechanics courses. CEE 321 is styled after a flipped classroom model and students are assessed through quizzes, midterms, design projects, and a final exam. Student performance was evaluated for the Spring 2013 and Fall 2013 semesters through an error analysis technique designed to categorize student mistakes based on type of error and related topic. This analysis revealed that student's basic engineering mechanics skills improved throughout the course as well as identified the areas that students struggle in. The slope-deflection and direct stiffness methods of analysis and calculating cross-sectional properties are the primary areas of concern. Using appropriate technology in the engineering classroom has the potential to enhance the learning environment and address the areas of inadequacy identified by the performance analysis. A survey of CEE 321 students demonstrated that technology is a highly integrated and useful portion of student's lives. Therefore, the engineering classroom should reflect this. Through the use of analysis and design software, students are able to begin to develop design intuition and understanding while completing realistic engineering projects in their third year of undergraduate studies. Additionally, incorporating internet resources into and outside of the classroom allows students to be connected to course content from any web-enabled device of their choice. Lecture videos posted online covering the course content were requested by many CEE 321 students and are an emerging resource that supplements the flipped classroom model. The availability of such a tool allows students to revisit concepts that they do not understand or pause, rewind, and replay the lectures when necessary. An expansion of the structural analysis and design online lecture videos for CEE 321 are expected to address and improve the areas that students struggle in as identified by the error analysis.
ContributorsMika, Krista Nicole (Author) / Rajan, Subramaniam (Thesis director) / Mamlouk, Michael (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-12
134378-Thumbnail Image.png
Description
Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many

Cooperative education has a long-standing tradition within engineering education. As part of the experiential education field, it carries many success stories. Several universities offer a robust cooperative education track. In recent years, Arizona State University has made the decision to formalize a cooperative education program. Arizona State University, like many other institutions, has long since provided career support and promoted internships as an excellent work experience option before graduation. The decision to formalize a cooperative education program speaks to a need for a more rigorous path to work experience for engineering students. This paper is an investigation into the barriers and enablers behind a young cooperative education program. These results indicate that while students do benefit from the program, growth of the program may be tied to creating a meaningful distinction between cooperative education and other learning opportunities.
ContributorsGolka, Margaret (Author) / Jordan, Shawn (Thesis director) / Morrell, Darryl (Committee member) / W. P. Carey School of Business (Contributor) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134500-Thumbnail Image.png
Description
Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical

Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical illusions, Legos, and the instructor's vulnerability to tackle unconscious bias in a way that addresses the barriers in engineering culture that prevent engineers from learning social science issues. Unconscious bias has documented long-term negative impacts on success and personal development, even in engineering environments. Creating a module in engineering education that addresses unconscious bias with the aim of reducing the negative effects of bias would benefit developing engineers by improving product development and team diversity. Engineering culture fosters disengagement with social issues through three pillars: depoliticization, technical/social dualism, and meritocracy. The developed curriculum uses optical illusions and Legos as proxies to start discussions about unconscious bias. The proxies allow engineers to explore their own biases without running into one of the pillars of disengagement that limits the engineer's willingness to discuss social issues. The curriculum was implemented in the Fall of 2017 in an upper-division engineering classroom as a professional communication module. The module received qualitatively positive feedback from fellow instructors and students. The curriculum was only implemented once by the author, but future implementations should be done with a different instructor and using quantitative data to measure if the learning objectives were achieved. Appendix A of the paper contains a lesson plan of the module that could be implemented by other instructors.
Created2017-05
133057-Thumbnail Image.png
Description
The purpose of this paper is to develop an understanding of Navajo students' perspectives on how engineering can be used to improve life in their own communities on the Navajo reservation. Branching off an existing study that aims to develop a culturally-contextualized engineering design curriculum for middle schools in the

The purpose of this paper is to develop an understanding of Navajo students' perspectives on how engineering can be used to improve life in their own communities on the Navajo reservation. Branching off an existing study that aims to develop a culturally-contextualized engineering design curriculum for middle schools in the Navajo Nation, this research focuses on a curriculum module entitled, "Future Chapter Presidents". This module is inspired by the Future City Competition where middle school students are tasked with imagining a better future. To make "Future Chapter Presidents" more culturally-relevant, students are instead tasked with proposing solutions that will improve life on the reservation. This module emphasizes engineering design alongside teaching Navajo Nation government standards by having students in the class run for a position in their local government. Students are prompted with creating a campaign poster that showcases their proposed solutions directed at their own communities. In order to analyze students' perspectives and understanding of how engineering can be used to improve life on the reservation, thematic analysis is used to study each individual poster. Meanwhile, because the researchers conducting this study are not Navajo, Tribal Critical Race Theory (Brayboy, 2006) was applied to ensure that the content of the posters are interpreted from an Indigenous lens. The results of this study can be used to inform future curriculum development for engineering design modules in the Navajo Nation and expand upon existing literature that provides understanding of how Navajo students experience and understand engineering in the context of their culture.
ContributorsPangan, Tyrine Jamella Duenas (Author) / Jordan, Shawn (Thesis director) / Foster, Christina (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12