Matching Items (18)
Filtering by

Clear all filters

150600-Thumbnail Image.png
Description
Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions

Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.
ContributorsKelly, Jacquelyn (Author) / Baker, Dale (Thesis advisor) / Ganesh, Tirupalavanam G. (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2012
151052-Thumbnail Image.png
Description
From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type

From the instructional perspective, the scope of "active learning" in the literature is very broad and includes all sorts of classroom activities that engage students with the learning experience. However, classifying all classroom activities as a mode of "active learning" simply ignores the unique cognitive processes associated with the type of activity. The lack of an extensive framework and taxonomy regarding the relative effectiveness of these "active" activities makes it difficult to compare and contrast the value of conditions in different studies in terms of student learning. Recently, Chi (2009) proposed a framework of differentiated overt learning activities (DOLA) as active, constructive, and interactive based on their underlying cognitive principles and their effectiveness on students' learning outcomes. The motivating question behind this framework is whether some types of engagement affect learning outcomes more than the others. This work evaluated the effectiveness and applicability of the DOLA framework to learning activities for STEM classes. After classification of overt learning activities as being active, constructive or interactive, I then tested the ICAP hypothesis, which states that student learning is more effective in interactive activities than constructive activities, which are more effective than active activities, which are more effective than passive activities. I conducted two studies (Study 1 and Study 2) to determine how and to what degree differentiated activities affected students' learning outcomes. For both studies, I measured students' knowledge of materials science and engineering concepts. Results for Study 1 showed that students scored higher on all post-class quiz questions after participating in interactive and constructive activities than after the active activities. However, student scores on more difficult, inference questions suggested that interactive activities provided significantly deeper learning than either constructive or active activities. Results for Study 2 showed that students' learning, in terms of gain scores, increased systematically from passive to active to constructive to interactive, as predicted by ICAP. All the increases, from condition to condition, were significant. Verbal analysis of the students' dialogue in interactive condition indicated a strong correlation between the co-construction of knowledge and learning gains. When the statements and responses of each student build upon those of the other, both students benefit from the collaboration. Also, the linear combination of discourse moves was significantly related to the adjusted gain scores with a very high correlation coefficient. Specifically, the elaborate type discourse moves were positively correlated with learning outcomes; whereas the accept type moves were negatively correlated with learning outcomes. Analyses of authentic activities in a STEM classroom showed that they fit within the taxonomy of the DOLA framework. The results of the two studies provided evidence to support the predictions of the ICAP hypothesis.
ContributorsMenekşe, Muhsin (Author) / Chi, Michelene T.H. (Thesis advisor) / Baker, Dale (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2012
153951-Thumbnail Image.png
Description
Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These

Engineering education can provide students with the tools to address complex, multidisciplinary grand challenge problems in sustainable and global contexts. However, engineering education faces several challenges, including low diversity percentages, high attrition rates, and the need to better engage and prepare students for the role of a modern engineer. These challenges can be addressed by integrating sustainability grand challenges into engineering curriculum.

Two main strategies have emerged for integrating sustainability grand challenges. In the stand-alone course method, engineering programs establish one or two distinct courses that address sustainability grand challenges in depth. In the module method, engineering programs integrate sustainability grand challenges throughout existing courses. Neither method has been assessed in the literature.

This thesis aimed to develop sustainability modules, to create methods for evaluating the modules’ effectiveness on student cognitive and affective outcomes, to create methods for evaluating students’ cumulative sustainability knowledge, and to evaluate the stand-alone course method to integrate sustainability grand challenges into engineering curricula via active and experiential learning.

The Sustainable Metrics Module for teaching sustainability concepts and engaging and motivating diverse sets of students revealed that the activity portion of the module had the greatest impact on learning outcome retention.

The Game Design Module addressed methods for assessing student mastery of course content with student-developed games indicated that using board game design improved student performance and increased student satisfaction.

Evaluation of senior design capstone projects via novel comprehensive rubric to assess sustainability learned over students’ curriculum revealed that students’ performance is primarily driven by their instructor’s expectations. The rubric provided a universal tool for assessing students’ sustainability knowledge and could also be applied to sustainability-focused projects.

With this in mind, engineering educators should pursue modules that connect sustainability grand challenges to engineering concepts, because student performance improves and students report higher satisfaction. Instructors should utilize pedagogies that engage diverse students and impact concept retention, such as active and experiential learning. When evaluating the impact of sustainability in the curriculum, innovative assessment methods should be employed to understand student mastery and application of course concepts and the impacts that topics and experiences have on student satisfaction.
ContributorsAntaya, Claire Louise (Author) / Landis, Amy E. (Thesis advisor) / Parrish, Kristen (Thesis advisor) / Bilec, Melissa M (Committee member) / Besterfield-Sacre, Mary E (Committee member) / Allenby, Braden R. (Committee member) / Arizona State University (Publisher)
Created2015
157146-Thumbnail Image.png
Description
There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at

There has been a growing emphasis on the education of future generations of engineers who will have to tackle complex, global issues that are sociotechnical in nature. The National Science Foundation invests millions of dollars in interdisciplinary engineering education research (EER) to create an innovative and inclusive culture aimed at radical change in the engineering education system. This exploratory research sought to better understand ways of thinking to address complex educational challenges, specifically, in the context of engineering-social sciences collaborations. The mixed methods inquiry drew on the ways of thinking perspectives from sustainability education to adapt futures, values, systems, and strategic thinking to the context of EER. Using the adapted framework, nine engineer-social scientist dyads were interviewed to empirically understand conceptualizations and applications of futures, values, systems, and strategic thinking. The qualitative results informed an original survey instrument, which was distributed to a sample of 310 researchers nationwide. Valid responses (n = 111) were analyzed to uncover the number and nature of factors underlying the scales of futures, values, systems, and strategic thinking. Findings illustrate the correlated, multidimensional nature of ways of thinking. Results from the qualitative and quantitative phases were also analyzed together to make recommendations for policy, teaching, research, and future collaborations. The current research suggested that ways of thinking, while perceived as a concept in theory, can and should be used in practice. Futures, values, systems, and strategic thinking, when used in conjunction could be an important tool for researchers to frame decisions regarding engineering education problem/solution constellations.
ContributorsDalal, Medha (Author) / Archambault, Leanna M (Thesis advisor) / Carberry, Adam (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2019
134360-Thumbnail Image.png
Description
The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE).

The goal of this research study was to empirically study the effects of a project based learning activity. The effectiveness of this study was benchmarked according to two results: the effectiveness in communicating the scope and impact of engineering, and the effectiveness in increasing interest in computer systems engineering (CSE). This research report presents an analysis of the effects of making engineering education socially relevant, interesting and accessible. High school students participated in a learning experience in which they designed flood evacuation systems that could warn a city of incoming floods. Both pre-assessments and post-assessments were implemented to capture students' awareness of engineering tasks and their interest levels in engineering tasks. Data on students' perceptions of specific engineering tasks were analyzed quantitatively through Wilcoxon signed-rank testing and determined that the program had significant positive effects on developing more accurate conceptions of engineering tasks. The results relating to student interest in CSE indicated that there was an increased level of interest in CSE engineering tasks after the program. There was a 14% increase in number of students who found engineering tasks interesting from 64% to 78%. However, as participants self-selected to participate in this learning experience, many students had positive perceptions of engineering tasks prior to engaging in the learning experience. This study was successful and met both of its primary goals of enhancing awareness and interest in engineering in this particular group of high school students.
ContributorsRidhwaan, Syed (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154443-Thumbnail Image.png
Description
This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM).

This study sought the lived and told stories of Native American women working in engineering and technology so that their voices may be heard in engineering education scholarship and challenge assumptions surrounding universal understandings of what it means to be a minority woman in science, technology, engineering, and mathematics (STEM). The study was directed by two research questions: (1) What are the lived and told stories of Native women in engineering and technology who are leading initiatives to improve their Native communities and (2) How do Native women’s understandings of their identities influence their work and acts of leadership? The study employed narrative inquiry as the methodological framework and was guided by theoretical frameworks of identities as constructed, multiple, and intersectional (Crenshaw, 1989; Tajfel & Turner, 1979), hybridity, and “third spaces” (Bhabha, 2012). The inquiry was also informed by feminist theories of Native scholars (Green, 1983; Kidwell, 1978) and engineering education (Beddoes & Borrego, 2011; Riley, Pawley, Tucker, & Catalano, 2009). The narrative analysis presented three narratives, based upon interviews, field notes, observations, and documents: (1) the story of a Navajo woman working within a large technical corporation (Jaemie); (2) the story of an Akimel O’odham-Mexican woman working within a tribally-owned technical business (Mia); and (3) the story of a Navajo woman growing her own technical business (Catherine). The narratives revealed a series of impactful transitions that enabled Jaemie, Mia, and Catherine to work and lead in engineering and technology. The transitions revolved around themes of becoming professionals, encountering and overcoming hardship, seeking to connect and contribute to Natives through work, leading change for their Native communities, and advancing their professional selves and their Native communities. Across the transitions, a transformation emerged from cultural navigation to leadership for the creation of new hybrid spaces that represented innovative sites of opportunity for Native communities. The strength of the Native spaces enabled Jaemie, Mia, and Catherine to leverage their identities as Native women within the global context of engineering and technology. The narratives denote the power of story by contributing the depth and richness of lived realities in engineering and technology.
ContributorsFoster, Christina Hobson (Author) / Jordan, Shawn (Thesis advisor) / Fixico, Donald (Committee member) / Lande, Micah (Committee member) / McKenna, Anna (Committee member) / Arizona State University (Publisher)
Created2016
155136-Thumbnail Image.png
Description
One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or problem solving questions. While these types of questions are relevant

One of the primary objective in a computer science related course is for students to be able to write programs implementing the concepts covered in that course. In educational psychology, however, learning gains are more commonly measured using recall or problem solving questions. While these types of questions are relevant to computer science exams, they do not necessarily reflect a student’s ability to apply concepts by writing an original program to solve a novel problem.

This thesis investigates the effectiveness of including questions within instructional multimedia content to improve student performance on a related programming assignment. Similar techniques have proven effective in educational psychology research using other measures. The objective of this thesis is to apply educational techniques used in other domains to an experiment with real world measures of students in a computer science course. The findings of this paper demonstrate that the techniques used were promising in improving student performance on a programming assignment.
ContributorsMar, Christopher (Author) / Sohoni, Sohum (Thesis advisor) / Nelson, Brian C (Committee member) / Craig, Scotty D. (Committee member) / Arizona State University (Publisher)
Created2016
155399-Thumbnail Image.png
Description
The 21st century will be the site of numerous changes in education systems in response to a rapidly evolving technological environment where existing skill sets and career structures may cease to exist or, at the very least, change dramatically. Likewise, the nature of work will also change to become more

The 21st century will be the site of numerous changes in education systems in response to a rapidly evolving technological environment where existing skill sets and career structures may cease to exist or, at the very least, change dramatically. Likewise, the nature of work will also change to become more automated and more technologically intensive across all sectors, from food service to scientific research. Simply having technical expertise or the ability to process and retain facts will in no way guarantee success in higher education or a satisfying career. Instead, the future will value those educated in a way that encourages collaboration with technology, critical thinking, creativity, clear communication skills, and strong lifelong learning strategies. These changes pose a challenge for higher education’s promise of employability and success post-graduation. Addressing how to prepare students for a technologically uncertain future is challenging. One possible model for education to prepare students for the future of work can be found within the Maker Movement. However, it is not fully understood what parts of this movement are most meaningful to implement in education more broadly, and higher education in particular. Through the qualitative analysis of nearly 160 interviews of adult makers, young makers and young makers’ parents, this dissertation unpacks how makers are learning, what they are learning, and how these qualities are applicable to education goals and the future of work in the 21st century. This research demonstrates that makers are learning valuable skills to prepare them for the future of work in the 21st century. Makers are learning communication skills, technical skills in fabrication and design, and developing lifelong learning strategies that will help prepare them for life in an increasingly technologically integrated future. This work discusses what aspects of the Maker Movement are most important for integration into higher education.
ContributorsWigner, Aubrey (Author) / Lande, Micah (Thesis advisor) / Allenby, Braden (Committee member) / Bennett, Ira (Committee member) / Arizona State University (Publisher)
Created2017
155824-Thumbnail Image.png
Description
The higher education sector is always changing and seeks for robust methodologies to make education more effective and produce higher quality products which are the future professionals. While each student has different preference in learning, numerous forms of instructional strategies are adopted to engage students in varied ways. Existing

The higher education sector is always changing and seeks for robust methodologies to make education more effective and produce higher quality products which are the future professionals. While each student has different preference in learning, numerous forms of instructional strategies are adopted to engage students in varied ways. Existing literature has studied the impacts of various teaching strategies on students’ performance. Previous studies did not figure out if personal characteristics such as honestly, emotionality, etc. have any impacts on the students’ academic performance. This master thesis uses the detailed information gathered through surveying construction students and analyses such data to determine the relationship between various personal factors and understand if there is any relation between students’ academic performance and personal characteristics. This work has used HEXACO factor scales and Emotional Intelligence (EI) as a basis of its analysis. Results of this analysis indicated that there is no significant correlation between students’ academic performance and HEXACO and EI criteria. Although the analysis process tried to provide the most accurate and robust results, but findings could potentially be affected by a number of factors such as excluding some survey responses from data analysis due to confusing responses or being outlier.
ContributorsDadvar, Atefeh (Author) / Sullivan, Kenneth (Thesis advisor) / Smithwick, Jake (Committee member) / Lines, Brian (Committee member) / Arizona State University (Publisher)
Created2017
135707-Thumbnail Image.png
Description
The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this

The goal of this research study was to empirically study a poster-based messaging campaign in comparison to that of a project-based learning approach in assessing the effectiveness of these methods in conveying the scope of biomedical engineering to upper elementary school students. For the purpose of this honors thesis, this research paper specifically reflects and analyzes the first stage of this study, the poster-based messaging campaign. 6th grade students received socially relevant messaging of juniors and seniors at ASU achieving their biomedical aspirations, and received information regarding four crucial themes of biomedical engineering via daily presentations and a website. Their learning was tracked over the course of the weeklong immersion program through a pre/post assessment. This data was then analyzed through the Wilcoxon matched pairs test to determine whether the change in biomedical engineering awareness was statistically significant. It was determined that a poster-based messaging campaign indeed increased awareness of socially relevant themes within biomedical engineering, and provided researchers with tangible ways to revise the study before a second round of implementation. The next stage of the study aims to explain biomedical engineering through engaging activities that stimulate making while emphasizing design-aesthetic appeal and engineering habits of mind such as creativity, teamwork, and communication.
ContributorsSwaminathan, Swetha Anu (Author) / Ganesh, Tirupalavanam (Thesis director) / Shrake, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05