Matching Items (4)
Filtering by

Clear all filters

136249-Thumbnail Image.png
Description
Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State

Various reports produced by the National Research Council suggest that K-12 curricula expand Science, Technology, Engineering, and Mathematics to better help students develop their ability to reason and employ scientific habits rather than simply building scientific knowledge. Every spring, the Arizona Department of Education (ADE) in conjunction with Arizona State University holds a professional development workshop titled "Engineering Practices in the Secondary Science Classroom: Engineering Training for Grade 6-12 Math and Science School Teams". This workshop provides math and science teachers with the opportunity to either sustain existing engineering proficiency or be exposed to engineering design practices for the first time. To build teachers' proficiency with employing engineering design practices, they follow a two-day curriculum designed for application in both science and math classrooms as a conjoined effort. As of spring 2015, very little feedback has been received concerning the effectiveness of the ASU-ADE workshops. New feedback methods have been developed for future deployment as past and more informal immediate feedback from teachers and students was used to create preliminary changes in the workshop curriculum. In addition, basic laboratory testing has been performed to further link together engineering problem solving with experiments and computer modelling. In improving feedback and expanding available material, the curriculum was analyzed and improved to more effectively train teachers in engineering practices and implement these practices in their classrooms.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam (Thesis director) / Neithalath, Narayanan (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
137399-Thumbnail Image.png
Description
The civil engineering curriculum includes the engineering fields of environmental, geotechnical, hydrology, structural, and transportation. A particular focus on the structural engineering curriculum outline involves courses in mathematics, engineering mechanics, structural analysis, and structural design. The core structural analysis and design course at Arizona State University (CEE 321) is a

The civil engineering curriculum includes the engineering fields of environmental, geotechnical, hydrology, structural, and transportation. A particular focus on the structural engineering curriculum outline involves courses in mathematics, engineering mechanics, structural analysis, and structural design. The core structural analysis and design course at Arizona State University (CEE 321) is a transition course to connect realistic structural design and analysis concepts to an engineering foundation created by the first and second year mathematics and mechanics courses. CEE 321 is styled after a flipped classroom model and students are assessed through quizzes, midterms, design projects, and a final exam. Student performance was evaluated for the Spring 2013 and Fall 2013 semesters through an error analysis technique designed to categorize student mistakes based on type of error and related topic. This analysis revealed that student's basic engineering mechanics skills improved throughout the course as well as identified the areas that students struggle in. The slope-deflection and direct stiffness methods of analysis and calculating cross-sectional properties are the primary areas of concern. Using appropriate technology in the engineering classroom has the potential to enhance the learning environment and address the areas of inadequacy identified by the performance analysis. A survey of CEE 321 students demonstrated that technology is a highly integrated and useful portion of student's lives. Therefore, the engineering classroom should reflect this. Through the use of analysis and design software, students are able to begin to develop design intuition and understanding while completing realistic engineering projects in their third year of undergraduate studies. Additionally, incorporating internet resources into and outside of the classroom allows students to be connected to course content from any web-enabled device of their choice. Lecture videos posted online covering the course content were requested by many CEE 321 students and are an emerging resource that supplements the flipped classroom model. The availability of such a tool allows students to revisit concepts that they do not understand or pause, rewind, and replay the lectures when necessary. An expansion of the structural analysis and design online lecture videos for CEE 321 are expected to address and improve the areas that students struggle in as identified by the error analysis.
ContributorsMika, Krista Nicole (Author) / Rajan, Subramaniam (Thesis director) / Mamlouk, Michael (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2013-12
134500-Thumbnail Image.png
Description
Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical

Engineers spend several years studying intense technical details of the processes that shape our world, yet few are exposed to classes addressing social behaviors or issues. Engineering culture creates specific barriers to addressing social science issues, such as unconscious bias, within engineering classrooms. I developed a curriculum that uses optical illusions, Legos, and the instructor's vulnerability to tackle unconscious bias in a way that addresses the barriers in engineering culture that prevent engineers from learning social science issues. Unconscious bias has documented long-term negative impacts on success and personal development, even in engineering environments. Creating a module in engineering education that addresses unconscious bias with the aim of reducing the negative effects of bias would benefit developing engineers by improving product development and team diversity. Engineering culture fosters disengagement with social issues through three pillars: depoliticization, technical/social dualism, and meritocracy. The developed curriculum uses optical illusions and Legos as proxies to start discussions about unconscious bias. The proxies allow engineers to explore their own biases without running into one of the pillars of disengagement that limits the engineer's willingness to discuss social issues. The curriculum was implemented in the Fall of 2017 in an upper-division engineering classroom as a professional communication module. The module received qualitatively positive feedback from fellow instructors and students. The curriculum was only implemented once by the author, but future implementations should be done with a different instructor and using quantitative data to measure if the learning objectives were achieved. Appendix A of the paper contains a lesson plan of the module that could be implemented by other instructors.
Created2017-05
134875-Thumbnail Image.png
Description
Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State

Productivity in the construction industry is an essential measure of production efficiency and economic progress, quantified by craft laborers' time spent directly adding value to a project. In order to better understand craft labor productivity as an aspect of lean construction, an activity analysis was conducted at the Arizona State University Palo Verde Main engineering dormitory construction site in December of 2016. The objective of this analysis on craft labor productivity in construction projects was to gather data regarding the efficiency of craft labor workers, make conclusions about the effects of time of day and other site-specific factors on labor productivity, as well as suggest improvements to implement in the construction process. Analysis suggests that supporting tasks, such as traveling or materials handling, constitute the majority of craft labors' efforts on the job site with the highest percentages occurring at the beginning and end of the work day. Direct work and delays were approximately equal at about 20% each hour with the highest peak occurring at lunchtime between 10:00 am and 11:00 am. The top suggestion to improve construction productivity would be to perform an extensive site utilization analysis due to the confined nature of this job site. Despite the limitations of an activity analysis to provide a complete prospective of all the factors that can affect craft labor productivity as well as the small number of days of data acquisition, this analysis provides a basic overview of the productivity at the Palo Verde Main construction site. Through this research, construction managers can more effectively generate site plans and schedules to increase labor productivity.
ContributorsFord, Emily Lucile (Author) / Grau, David (Thesis director) / Chong, Oswald (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12