Matching Items (21)
Filtering by

Clear all filters

133186-Thumbnail Image.png
Description
Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic

Most collegiate organizations aim to unite students with common interests and engage them in a like-minded community of peers. A significant sub-group of these organizations are classified under sororities and fraternities and commonly known as Greek Life. Member involvement is a crucial element for Greek Life as participation in philanthropic events, chapter meetings, rituals, recruitment events, etc. often reflects the state of the organization. The purpose of this project is to create a web application that allows members of an Arizona State University sorority to view their involvement activity as outlined by the chapter. Maintaining the balance between academics, sleep, a social life, and extra-curricular activities/organizations can be difficult for college students. With the use of this website, members can view their attendances, absences, and study/volunteer hours to know their progress towards the involvement requirements set by the chapter. This knowledge makes it easier to plan schedules and alleviate some stress associated with the time-management of sorority events, assignments/homework, and studying. It is also designed for the sorority leadership to analyze and track the participation of the membership. Members can submit their participation in events, making the need for manual counting and calculations disappear. The website administrator(s) can view and approve data from any and all members. The website was developed using HTML, CSS, and JavaScript in conjunction with Firebase for the back-end database. Human-Computer Interaction (HCI) tools and techniques were used throughout the development process to aide in prototyping, visual design, and evaluation. The front-end appearance of the website was designed to mimic the data manipulation used in the current involvement tracking system while presenting it in a more personalized and aesthetically pleasing manner.
ContributorsKolker, Madysen (Author) / McDaniel, Troy (Thesis director) / Tadayon, Arash (Committee member) / School of International Letters and Cultures (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
137309-Thumbnail Image.png
Description
Modern computer processors contain an embedded firmware known as microcode that controls decode and execution of x86 instructions. Although proprietary and relatively obscure, this microcode can be modified using updates released by hardware manufacturers to correct processor logic flaws (errata). At the same time, a malicious microcode update could compromise

Modern computer processors contain an embedded firmware known as microcode that controls decode and execution of x86 instructions. Although proprietary and relatively obscure, this microcode can be modified using updates released by hardware manufacturers to correct processor logic flaws (errata). At the same time, a malicious microcode update could compromise a processor by implementing new malicious instructions or altering the functionality of existing instructions, including processor-accelerated virtualization or cryptographic primitives. Not only is this attack vector capable of subverting all software-enforced security policies and access controls, but it also leaves behind no postmortem forensic evidence since the write-only patch memory is cleared upon system reset. Although supervisor privileges (ring zero) are required to update processor microcode, this attack cannot be easily mitigated due to the implementation of microcode update functionality within processor silicon. In this paper, we reveal the microarchitecture and mechanism of microcode updates, present a security analysis of this attack vector, and provide some mitigation suggestions.
Created2014-05
137481-Thumbnail Image.png
Description
We discuss processes involved in user-centric security design, including the synthesis of goals based on security and usability tasks. We suggest the usage of implicit security and the facilitation of secureuser actions. We propose a process for evaluating usability flaws by treating them as security threats and adapting traditional HCI

We discuss processes involved in user-centric security design, including the synthesis of goals based on security and usability tasks. We suggest the usage of implicit security and the facilitation of secureuser actions. We propose a process for evaluating usability flaws by treating them as security threats and adapting traditional HCI methods. We discuss how to correct these flaws once they are discovered. Finally, we discuss the Usable Security Development Model for developing usable secure systems.
ContributorsJorgensen, Jan Drake (Author) / Ahn, Gail-Joon (Thesis director) / VanLehn, Kurt (Committee member) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137152-Thumbnail Image.png
Description
Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is

Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is widely used for secure access control and applications where a contactless authentication element is desirable. Unfortunately, iCLASS has been shown to have security issues. Nevertheless customers continue to use it because of the great cost that would be required to completely replace it. This Honors Thesis will address attacks against iCLASS and means for countering them that do not require such an overhaul.
ContributorsMellott, Matthew John (Author) / Ahn, Gail-Joon (Thesis director) / Thorstenson, Tina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
134762-Thumbnail Image.png
Description
IoT Media broadcast devices, such as the Roku stick, Amazon Fire, and Chromecast have been emerging onto the market recently as a portable and inexpensive alternative to cable and disk players, allowing easy integration between home and business Wi-Fi networks and television systems capable of supporting HDMI inputs without the

IoT Media broadcast devices, such as the Roku stick, Amazon Fire, and Chromecast have been emerging onto the market recently as a portable and inexpensive alternative to cable and disk players, allowing easy integration between home and business Wi-Fi networks and television systems capable of supporting HDMI inputs without the additional overhead of setting up a heavy or complicated player or computer. The rapid expansion of these products as a mechanism to provide for TV Everywhere services for entertainment as well as cheap office appliances brings yet another node in the rapidly expanding network of IoT that surrounds us today. However, the security implications of these devices are nearly unexplored, despite their prevalence. In this thesis, I will go over the structure and mechanisms of Chromecast, and explore some of the potential exploits and consequences of the device. The thesis contains an overview of the inner workings of Chromecast, goes over the segregation and limited control and fundamental design choices of the Android based OS. It then identifies the objectives of security, four different potential methods of exploit to compromise those objectives on a Chromecast and/or its attached network, including rogue applications, traffic sniffing, evil access points and the most effective one: deauthentication attack. Tests or relevant analysis were carried out for each of these methods, and conclusions were drawn on their effectiveness. There is then a conclusion revolving around the consequences, mitigation and the future implications of security issues on Chromecast and the larger IoT landscape.
ContributorsHuang, Kaiyi (Author) / Zhao, Ziming (Thesis director) / Ahn, Gail-Joon (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133137-Thumbnail Image.png
Description
Third-party mixers are used to heighten the anonymity of Bitcoin users. The mixing techniques implemented by these tools are often untraceable on the blockchain, making them appealing to money launderers. This research aims to analyze mixers currently available on the deep web. In addition, an in-depth case study is done

Third-party mixers are used to heighten the anonymity of Bitcoin users. The mixing techniques implemented by these tools are often untraceable on the blockchain, making them appealing to money launderers. This research aims to analyze mixers currently available on the deep web. In addition, an in-depth case study is done on an open-source bitcoin mixer known as Penguin Mixer. A local version of Penguin Mixer was used to visualize mixer behavior under specific scenarios. This study could lead to the identification of vulnerabilities in mixing tools and detection of these tools on the blockchain.
ContributorsPakki, Jaswant (Author) / Doupe, Adam (Thesis director) / Shoshitaishvili, Yan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133050-Thumbnail Image.png
Description
Despite the more tightly controlled permissions and Java framework used by most programs in the Android operating system, an attacker can use the same classic vulnerabilities that exist for traditional Linux binaries on the programs in the Android operating system. Some classic vulnerabilities include stack overows, string formats, and hea

Despite the more tightly controlled permissions and Java framework used by most programs in the Android operating system, an attacker can use the same classic vulnerabilities that exist for traditional Linux binaries on the programs in the Android operating system. Some classic vulnerabilities include stack overows, string formats, and heap meta-information corruption. Through the exploitation of these vulnerabilities an attacker can hijack the execution ow of an application. After hijacking the execution ow, an attacker can then violate the con_dentiality, integrity, or availability of the operating system. Over the years, the operating systems and compliers have implemented a number of protections to prevent the exploitation of vulnerable programs. The most widely implemented protections include Non-eXecutable stack (NX Stack), Address Space Layout Randomization (ASLR), and Stack Canaries (Canaries). NX Stack protections prevent the injection and execution of arbitrary code through the use of a permissions framework within a program. Whereas, ASLR and Canaries rely on obfuscation techniques to protect control ow, which requires su_cient entropy between each execution. Early in the implementation of these protections in Linux, researchers discovered that without su_cient entropy between executions, ASLR and Canaries were easily bypassed. For example, the obfuscation techniques were useless in programs that ran continuously because the programs did not change the canaries or re-randomize the address space. Similarly, aws in the implementation of ASLR and Canaries in Android only re-randomizes the values after rebooting, which means the address space locations and canary values remain constant across the executions of an Android program. As a result, an attacker can hijack the control ow Android binaries that contain control ow vulnerabilities. The purpose of this paper is to expose these aws and the methodology used to verify their existence in Android versions 4.1 (Jelly Bean) through 8.0 (Oreo).
ContributorsGibbs, Wil (Author) / Doupe, Adam (Thesis director) / Shoshitaishvili, Yan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2018-12
134266-Thumbnail Image.png
Description
Node.js is an extremely popular development framework for web applications. The appeal of its event-driven, asynchronous flow and the convenience of JavaScript as its programming language have driven its rapid growth, and it is currently deployed by leading companies in retail, finance, and other important sectors. However, the tools currently

Node.js is an extremely popular development framework for web applications. The appeal of its event-driven, asynchronous flow and the convenience of JavaScript as its programming language have driven its rapid growth, and it is currently deployed by leading companies in retail, finance, and other important sectors. However, the tools currently available for Node.js developers to secure their applications against malicious attackers are notably scarce. While there has been a substantial amount of security tools created for web applications in many other languages such as PHP and Java, very little exists for Node.js applications. This could compromise private information belonging to companies such as PayPal and WalMart. We propose a tool to statically analyze Node.js web applications for five popular vulnerabilites: cross-site scripting, SQL injection, server-side request forgery, command injection, and code injection. We base our tool off of JSAI, a platform created to parse client-side JavaScript for security risks. JSAI is novel because of its configuration capabilities, which allow a user to choose between various analysis options at runtime in order to select the most thorough analysis with the least amount of processing time. We contribute to the development of our tool by rigorously analyzing and documenting vulnerable functions and objects in Node.js that are relevant to the vulnerabilities we have selected. We intend to use this documentation to build a robust Node.js static analysis tool and we hope that other developers will also incorporate this analysis into their Node.js security projects.
ContributorsWasserman, Jonathan Kanter (Author) / Doupe, Adam (Thesis director) / Ahn, Gail-Joon (Committee member) / Zhao, Ziming (Committee member) / School of Historical, Philosophical and Religious Studies (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133206-Thumbnail Image.png
Description
Ethereum smart contracts are susceptible not only to those vulnerabilities common to all software development domains, but also to those arising from the peculiar execution model of the Ethereum Virtual Machine. One of these vulnerabilities, a susceptibility to re-entrancy attacks, has been at the center of several high-profile contract exploits.

Ethereum smart contracts are susceptible not only to those vulnerabilities common to all software development domains, but also to those arising from the peculiar execution model of the Ethereum Virtual Machine. One of these vulnerabilities, a susceptibility to re-entrancy attacks, has been at the center of several high-profile contract exploits. Currently, there exist many tools to detect these vulnerabilties, as well as languages which preempt the creation of contracts exhibiting these issues, but no mechanism to address them in an automated fashion. One possible approach to filling this gap is direct patching of source files. The process of applying these patches to contracts written in Solidity, the primary Ethereum contract language, is discussed. Toward this end, a survey of deployed contracts is conducted, focusing on prevalence of language features and compiler versions. A heuristic approach to mitigating a particular class of re-entrancy vulnerability is developed, implemented as the SolPatch tool, and examined with respect to its limitations. As a proof of concept and illustrative example, a simplified version of the contract featured in a high-profile exploit is patched in this manner.
ContributorsLehman, Maxfield Chance Christian (Author) / Bazzi, Rida (Thesis director) / Doupe, Adam (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133018-Thumbnail Image.png
Description
This paper introduces MisophoniAPP, a new website for managing misophonia. It will briefly discuss the nature of this chronic syndrome, which is the experience of reacting strongly to certain everyday sounds, or “triggers”. Various forms of Cognitive Behavioral Therapy and the Neural Repatterning Technique are currently used to treat misophonia,

This paper introduces MisophoniAPP, a new website for managing misophonia. It will briefly discuss the nature of this chronic syndrome, which is the experience of reacting strongly to certain everyday sounds, or “triggers”. Various forms of Cognitive Behavioral Therapy and the Neural Repatterning Technique are currently used to treat misophonia, but they are not guaranteed to work for every patient. Few apps exist to help patients with their therapy, so this paper describes the design and creation of a new website that combines exposure therapy,
relaxation, and gamification to help patients alleviate their misophonic reflexes.
ContributorsNoziglia, Rachel Elisabeth (Author) / McDaniel, Troy (Thesis director) / Anderson, Derrick (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05