Matching Items (4)
Filtering by

Clear all filters

151721-Thumbnail Image.png
Description
Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and

Frequency effects favoring high print-frequency words have been observed in frequency judgment memory tasks. Healthy young adults performed frequency judgment tasks; one group performed a single task while another group did the same task while alternating their attention to a secondary task (mathematical equations). Performance was assessed by correct and error responses, reaction times, and accuracy. Accuracy and reaction times were analyzed in terms of memory load (task condition), number of repetitions, effect of high vs. low print-frequency, and correlations with working memory span. Multinomial tree analyses were also completed to investigate source vs. item memory and revealed a mirror effect in episodic memory experiments (source memory), but a frequency advantage in span tasks (item memory). Interestingly enough, we did not observe an advantage for high working memory span individuals in frequency judgments, even when participants split their attention during the dual task (similar to a complex span task). However, we concluded that both the amount of attentional resources allocated and prior experience with an item affect how it is stored in memory.
ContributorsPeterson, Megan Paige (Author) / Azuma, Tamiko (Thesis advisor) / Gray, Shelley (Committee member) / Liss, Julie (Committee member) / Arizona State University (Publisher)
Created2013
154110-Thumbnail Image.png
Description
Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task

Individual differences in working memory capacity partly arise from variability in attention control, a process influenced by negative emotional content. Thus, individual differences in working memory capacity should be predictive of differences in the ability to regulate attention in emotional contexts. To address this hypothesis, a complex-span working memory task (symmetry span) was modified so that negative arousing images or neutral images subtended the background during the encoding phase. Across three experiments, negative arousing images impaired working memory encoding relative to neutral images, resulting in impoverished symmetry span scores. Additionally, in Experiment 3, both negative and arousing images captured attention and led to increased hit rates in a subsequent recognition task. Contrary to the primary hypothesis, individual differences in working memory capacity derived from three complex span tasks failed to moderate the effect of negative arousing images on working memory encoding across two large scale studies. Implications for theories of working memory and attention control in emotional contexts will be discussed.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / Amazeen, Eric (Committee member) / Killeen, Peter (Committee member) / Goldinger, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
132118-Thumbnail Image.png
Description
Purpose: Children with attention-deficit/hyperactivity disorder (ADHD) have been found to have central executive deficits in working memory as well as less academic success than children with typical development. The purpose of this study was to determine which components of central executive function were most closely related to parental rating scores

Purpose: Children with attention-deficit/hyperactivity disorder (ADHD) have been found to have central executive deficits in working memory as well as less academic success than children with typical development. The purpose of this study was to determine which components of central executive function were most closely related to parental rating scores of attention.
Method: Two hundred twenty three 2nd graders with typical development, dyslexia, developmental language disorder (DLD), or dyslexia/DLD completed three central executive tasks from the Comprehensive Assessment Battery for Children–Working Memory (Gray, Alt, Hogan, Green, & Cowan, n.d.). Parents of the children completed the ADHD Rating Scale-IV: Home Version for their child. None of the participants had been diagnosed with ADD/ADHD
Results: When diagnostic group performance was compared we found significant differences on each central executive task. When ADHD group performance was compared we found a significant between-group performance only on the n-back visual task with the high-risk group scoring lower than the other two groups. ADHD rating scores predicted a significant amount of variance for each central executive task, but percentages were small (3%-6%).
Discussion: Working memory is known to be related to attention control. Stronger attentional control is associated with a higher working memory performance. Our study showed that children most at risk for ADD/ADHD based on parent ratings scored lowest on the visuospatial task, likely because rehearsal of visuospatial information is not possible so relies more heavily on attention. This study is a step toward considering how attention affects working memory performance so that both can be considered when designing instruction and interventions.
ContributorsCleveland, Alexandra (Author) / Gray, Shelley (Thesis director) / Azuma, Tamiko (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
156674-Thumbnail Image.png
Description
Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and

Working memory capacity and fluid intelligence are important predictors of performance in educational settings. Thus, understanding the processes underlying the relation between working memory capacity and fluid intelligence is important. Three large scale individual differences experiments were conducted to determine the mechanisms underlying the relation between working memory capacity and fluid intelligence. Experiments 1 and 2 were designed to assess whether individual differences in strategic behavior contribute to the variance shared between working memory capacity and fluid intelligence. In Experiment 3, competing theories for describing the underlying processes (cognitive vs. strategy) were evaluated in a comprehensive examination of potential underlying mechanisms. These data help inform existing theories about the mechanisms underlying the relation between WMC and gF. However, these data also indicate that the current theoretical model of the shared variance between WMC and gF would need to be revised to account for the data in Experiment 3. Possible sources of misfit are considered in the discussion along with a consideration of the theoretical implications of observing those relations in the Experiment 3 data.
ContributorsWingert, Kimberly Marie (Author) / Brewer, Gene A. (Thesis advisor) / McNamara, Danielle (Thesis advisor) / McClure, Samuel (Committee member) / Redick, Thomas (Committee member) / Arizona State University (Publisher)
Created2018