Matching Items (8)
Filtering by

Clear all filters

153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
153127-Thumbnail Image.png
Description
Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this

Many web search improvements have been developed since the advent of the modern search engine, but one underrepresented area is the application of specific customizations to search results for educational web sites. In order to address this issue and improve the relevance of search results in automated learning environments, this work has integrated context-aware search principles with applications of preference based re-ranking and query modifications. This research investigates several aspects of context-aware search principles, specifically context-sensitive and preference based re-ranking of results which take user inputs as to their preferred content, and combines this with search query modifications which automatically search for a variety of modified terms based on the given search query, integrating these results into the overall re-ranking for the context. The result of this work is a novel web search algorithm which could be applied to any online learning environment attempting to collect relevant resources for learning about a given topic. The algorithm has been evaluated through user studies comparing traditional search results to the context-aware results returned through the algorithm for a given topic. These studies explore how this integration of methods could provide improved relevance in the search results returned when compared against other modern search engines.
ContributorsVan Egmond, Eric (Author) / Burleson, Winslow (Thesis advisor) / Syrotiuk, Violet (Thesis advisor) / Nelson, Brian (Committee member) / Arizona State University (Publisher)
Created2014
137029-Thumbnail Image.png
Description
Collaborative learning is a potential technique for teachers to use to meet the diverse learning needs of the students in their classrooms. Previous studies have investigated the contexts in which the benefits of collaborative learning show greater presence. The most important factor found was the quality of the interactions. Studies

Collaborative learning is a potential technique for teachers to use to meet the diverse learning needs of the students in their classrooms. Previous studies have investigated the contexts in which the benefits of collaborative learning show greater presence. The most important factor found was the quality of the interactions. Studies have suggested that high achieving students are capable of improving the quality of interactions. This bears the question if prior knowledge plays an influence in the learning outcome of students in collaborative learning. Results show that high prior knowledge students do not face a detriment in having low prior knowledge students as a partner comparing to having another high prior knowledge student and that low prior knowledge students show significantly higher learning outcome when partnered with a high prior knowledge partner than with another low prior knowledge student. It is therefore likely that having a high prior knowledge student within a dyad improves the quality of interaction, resulting in greater learning outcome through collaborative learning.
ContributorsKeyvani, Kewmars (Author) / Chi, Michelene (Thesis director) / Wylie, Ruth (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2014-05
134520-Thumbnail Image.png
Description
As one of the first attempts to research multimedia platforms for older adults when learning an online photo-editing software, this study examined whether an audio only, a text only, or a combination of an audio and text tutorial would be the most effective teaching method. Elderly adults aged 65 and

As one of the first attempts to research multimedia platforms for older adults when learning an online photo-editing software, this study examined whether an audio only, a text only, or a combination of an audio and text tutorial would be the most effective teaching method. Elderly adults aged 65 and older (N-45) were randomly assigned to one of the three conditions. They first went through a training phase that utilized their assigned condition to teach five tasks within the photo-editing program, and they were then tested on how well they learned these tasks as well as a transfer task. It was predicted that the multimedia condition would increase learning efficiency, produce more successes in the transfer task, and decrease cognitive load compared to the two unimodal conditions. The multimedia condition (text and audio) had no significant effect on transfer task successes or decreases in cognitive load compared to the unimodal conditions (text only and audio only). The multimedia condition, however, did produce significantly less errors on Tasks 2, 4, and 5 than the unimodal conditions. This suggests that redundancy principles may play an important role when designing learning platforms for elderly users, and that age needs to be considered as an additional factor during the technological design process.
ContributorsSwieczkowski, Hannah Elizabeth (Author) / Atkinson, Robert (Thesis director) / Chavez, Helen (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134133-Thumbnail Image.png
Description
Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the

Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the actual effects of hackathons especially at the collegiate level. This makes justifying the usage of valuable time and resources to host hackathons difficult for tech companies and academic institutions. This thesis specifically examines the effects of collegiate hackathons through running a collegiate hackathon known as Desert Hacks at Arizona State University (ASU). The participants of Desert Hacks were surveyed at the start and at the end of the event to analyze the effects. The results of the survey implicate that participants have grown in base computer programming skills, inclusion in the tech community, overall confidence, and motivation for the technological field. Through these results, this study can be used to help justify the necessity of collegiate hackathons and events similar.
ContributorsLe, Peter Thuan (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134971-Thumbnail Image.png
Description
This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was

This thesis investigates students' learning behaviors through their interaction with an educational technology, Web Programming Grading Assistant. The technology was developed to facilitate the grading of paper-based examinations in large lecture-based classrooms and to provide richer and more meaningful feedback to students. A classroom study was designed and data was gathered from an undergraduate computer-programming course in the fall of 2016. Analysis of the data revealed that there was a negative correlation between time lag of first review attempt and performance. A survey was developed and disseminated that gave insight into how students felt about the technology and what they normally do to study for programming exams. In conclusion, the knowledge gained in this study aids in the quest to better educate students in computer programming in large in-person classrooms.
ContributorsMurphy, Hannah (Author) / Hsiao, Ihan (Thesis director) / Nelson, Brian (Committee member) / School of Computing, Informatics, and Decision Systems Engineering (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171562-Thumbnail Image.png
Description
Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose

Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose to utilize these opportunities to self-assess their learning progress and practice their skill. My objective in this thesis is to understand to what extent self-assess process can impact novice programmers learning and what advanced learning technologies can I provide to enhance the learner’s outcome and the progress. In this dissertation, I conducted a series of studies to investigate learning analytics and students’ behaviors in working on self-assessments and reflection opportunities. To enable this objective, I designed a personalized learning platform named QuizIT that provides daily quizzes to support learners in the computer science domain. QuizIT adopts an Open Social Student Model (OSSM) that supports personalized learning and serves as a self-assessment system. It aims to ignite self-regulating behavior and engage students in the self-assessment and reflective procedure. I designed and integrated the personalized practice recommender to the platform to investigate the self-assessment process. I also evaluated the self-assessment behavioral trails as a predictor to the students’ performance. The statistical indicators suggested that the distributed reflections were associated with the learner's performance. I proceeded to address whether distributed reflections enable self-regulating behavior and lead to better learning in CS introductory courses. From the student interactions with the system, I found distinct behavioral patterns that showed early signs of the learners' performance trajectory. The utilization of the personalized recommender improved the student’s engagement and performance in the self-assessment procedure. When I focused on enhancing reflections impact during self-assessment sessions through weekly opportunities, the learners in the CS domain showed better self-regulating learning behavior when utilizing those opportunities. The weekly reflections provided by the learners were able to capture more reflective features than the daily opportunities. Overall, this dissertation demonstrates the effectiveness of the learning technologies, including adaptive recommender and reflection, to support novice programming learners and their self-assessing processes.
ContributorsAlzaid, Mohammed (Author) / Hsiao, Ihan (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / VanLehn, Kurt (Committee member) / Nelson, Brian (Committee member) / Bansal, Srividya (Committee member) / Arizona State University (Publisher)
Created2022