Matching Items (12)
Filtering by

Clear all filters

151742-Thumbnail Image.png
Description
This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We

This research is focused on two separate but related topics. The first uses an electroencephalographic (EEG) brain-computer interface (BCI) to explore the phenomenon of motor learning transfer. The second takes a closer look at the EEG-BCI itself and tests an alternate way of mapping EEG signals into machine commands. We test whether motor learning transfer is more related to use of shared neural structures between imagery and motor execution or to more generalized cognitive factors. Using an EEG-BCI, we train one group of participants to control the movements of a cursor using embodied motor imagery. A second group is trained to control the cursor using abstract motor imagery. A third control group practices moving the cursor using an arm and finger on a touch screen. We hypothesized that if motor learning transfer is related to the use of shared neural structures then the embodied motor imagery group would show more learning transfer than the abstract imaging group. If, on the other hand, motor learning transfer results from more general cognitive processes, then the abstract motor imagery group should also demonstrate motor learning transfer to the manual performance of the same task. Our findings support that motor learning transfer is due to the use of shared neural structures between imaging and motor execution of a task. The abstract group showed no motor learning transfer despite being better at EEG-BCI control than the embodied group. The fact that more participants were able to learn EEG-BCI control using abstract imagery suggests that abstract imagery may be more suitable for EEG-BCIs for some disabilities, while embodied imagery may be more suitable for others. In Part 2, EEG data collected in the above experiment was used to train an artificial neural network (ANN) to map EEG signals to machine commands. We found that our open-source ANN using spectrograms generated from SFFTs is fundamentally different and in some ways superior to Emotiv's proprietary method. Our use of novel combinations of existing technologies along with abstract and embodied imagery facilitates adaptive customization of EEG-BCI control to meet needs of individual users.
Contributorsda Silva, Flavio J. K (Author) / Mcbeath, Michael K (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Presson, Clark (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2013
152920-Thumbnail Image.png
Description
Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we

Categories are often defined by rules regarding their features. These rules may be intensely complex yet, despite the complexity of these rules, we are often able to learn them with sufficient practice. A possible explanation for how we arrive at consistent category judgments despite these difficulties would be that we may define these complex categories such as chairs, tables, or stairs by understanding the simpler rules defined by potential interactions with these objects. This concept, called grounding, allows for the learning and transfer of complex categorization rules if said rules are capable of being expressed in a more simple fashion by virtue of meaningful physical interactions. The present experiment tested this hypothesis by having participants engage in either a Rule Based (RB) or Information Integration (II) categorization task with instructions to engage with the stimuli in either a non-interactive or interactive fashion. If participants were capable of grounding the categories, which were defined in the II task with a complex visual rule, to a simpler interactive rule, then participants with interactive instructions should outperform participants with non-interactive instructions. Results indicated that physical interaction with stimuli had a marginally beneficial effect on category learning, but this effect seemed most prevalent in participants were engaged in an II task.
ContributorsCrawford, Thomas (Author) / Homa, Donald (Thesis advisor) / Glenberg, Arthur (Committee member) / McBeath, Michael (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2014
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
135262-Thumbnail Image.png
Description
Menopause is associated with a wide array of negative symptoms. As average lifespan increases due to advances in healthcare and technology, more women are spending a larger portion of their lives in a menopausal state low in estrogen and progesterone. Hormone therapies such as Conjugated Equine Estrogens (CEE) and the

Menopause is associated with a wide array of negative symptoms. As average lifespan increases due to advances in healthcare and technology, more women are spending a larger portion of their lives in a menopausal state low in estrogen and progesterone. Hormone therapies such as Conjugated Equine Estrogens (CEE) and the bioidentical estrogen, 17-estradiol (E2), are commonly prescribed to treat the negative symptoms of menopause. Our laboratory has previously shown that CEE has differential effects on cognitive ability depending on whether menopause is transitional (VCD) or surgical (ovariectomy, OVX). Further, the negative impact of CEE on cognitive function in a transitional ovary-intact model of menopause was associated with high levels of serum androstenedione; the primary hormone circulating in a follicle-deplete menopausal state. Here, we investigate the cognitive effects of these two common hormone therapies separately, and in conjunction with the hormone androstenedione, in a "blank-slate" OVX mouse model. We assessed cognitive ability using two behavioral tasks such at the Water Radial Arm Maze (WRAM, measuring spatial working and reference memory) and the Morris water maze (MM, measuring spatial reference memory). In the WRAM, every treatment group saw impaired performance compared to Vehicle but the combination group of E2 plus Androstenedione. In the MM, the combination group of E2 plus Androstenedione actually enhanced performance in the maze compared to every other comparable group. Translationally, these results suggest that CEE given in the presence of an androstenedione-dominant hormone milieu is impairing to cognition, E2 in this same manner is not. These results yield valuable insight into optimal hormone therapies for menopausal women.
ContributorsGranger, Steven Jay (Author) / Bimonte-Nelson, Heather (Thesis director) / Presson, Clark (Committee member) / Hiroi, Sheri (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134052-Thumbnail Image.png
Description
It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of

It is a well-established finding in memory research that spacing or distributing information, as opposed to blocking all the information together, results in an enhanced memory of the learned material. Recently, researchers have decided to investigate if this spacing effect is also beneficial in category learning. In a set of experiments, Carvalho & Goldstone (2013), demonstrated that a blocked presentation showed an advantage during learning, but that ultimately, the distributed presentation yielded better performance during a post-learning transfer test. However, we have identified a major methodological issue in this study that we believe contaminates the results in a way that leads to an inflation and misrepresentation of learning levels. The present study aimed to correct this issue and re-examine whether a blocked or distributed presentation enhances the learning and subsequent generalization of categories. We also introduced two shaping variables, category size and distortion level at transfer, in addition to the mode of presentation (blocked versus distributed). Results showed no significant differences of mode of presentation at either the learning or transfer phases, thus supporting our concern about the previous study. Additional findings showed benefits in learning categories with a greater category size, as well as higher classification accuracy of novel stimuli at lower-distortion levels.
ContributorsJacoby, Victoria Leigh (Author) / Homa, Donald (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135808-Thumbnail Image.png
Description
The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms

The premise of the embodied cognition hypothesis is that cognitive processes require emotion, sensory, and motor systems in the brain, rather than using arbitrary symbols divorced from sensorimotor systems. The hypothesis explains many of the mechanisms of mental simulation or imagination and how they facilitate comprehension of concepts. Some forms of embodied processing can be measured using electroencephalography (EEG), in a particular waveform known as the mu rhythm (8-13 Hz) in the sensorimotor cortex of the brain. Power in the mu band is suppressed (or de-synchronized) when an individual performs an action, as well as when the individual imagines performing the action, thus mu suppression measures embodied imagination. An important question however is whether the sensorimotor cortex involvement while reading, as measured by mu suppression, is part of the comprehension of what is read or if it is arises after comprehension has taken place. To answer this question, participants first took the Gates-MacGinitie reading comprehension test. Then, mu-suppression was measured while participants read experimental materials. The degree of mu-suppression while reading verbs correlated .45 with their score on the Gates-MacGinitie test. This correlation strongly suggests that the sensorimotor system involvement while reading action sentences is part of the comprehension process rather than being an aftereffect.
ContributorsMarino, Annette Webb (Author) / Glenberg, Arthur (Thesis director) / Presson, Clark (Committee member) / Blais, Chris (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
Abstract: Behavioral evidence suggests that joint coordinated movement attunes one's own motor system to the actions of another. This attunement is called a joint body schema (JBS). According to the JBS hypothesis, the attunement arises from heightened mirror neuron sensitivity to the actions of the other person. This study uses

Abstract: Behavioral evidence suggests that joint coordinated movement attunes one's own motor system to the actions of another. This attunement is called a joint body schema (JBS). According to the JBS hypothesis, the attunement arises from heightened mirror neuron sensitivity to the actions of the other person. This study uses EEG mu suppression, an index of mirror neuron system activity, to provide neurophysiological evidence for the JBS hypothesis. After a joint action task in which the experimenter used her left hand, the participant's EEG revealed greater mu suppression (compared to before the task) in her right cerebral hemisphere when watching a left hand movement. This enhanced mu suppression was found regardless of whether the participant was moving or watching the experimenter move. These results are suggestive of super mirror neurons, that is, mirror neurons which are strengthened in sensitivity to another after a joint action task and do not distinguish between whether the individual or the individual's partner is moving.
ContributorsGoodwin, Brenna Renee (Author) / Glenberg, Art (Thesis director) / Presson, Clark (Committee member) / Blais, Chris (Committee member) / School of Historical, Philosophical and Religious Studies (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
Description

After answering a test question, feedback of the correct answer provided after a brief delay can be more beneficial to learning than feedback provided immediately (Brackbill & Kappy, 1962; Kulhavy & Anderson, 1972). Several theoretical models have been proposed to explain this delay-of-feedback benefit, with the most well supported being

After answering a test question, feedback of the correct answer provided after a brief delay can be more beneficial to learning than feedback provided immediately (Brackbill & Kappy, 1962; Kulhavy & Anderson, 1972). Several theoretical models have been proposed to explain this delay-of-feedback benefit, with the most well supported being that delaying feedback promotes anticipation of the correct answer, which has been examined using curiosity as a measure of answer anticipation (Mullaney et al. 2014). The present study tested this model across two task designs, one designed to elicit epistemic curiosity, and one designed to elicit perceptual curiosity, to determine if the relationship between curiosity and feedback delay is type-dependent. In Task 1, participants answered trivia questions, reported their subjective level of curiosity to know the answer, and then received correct answer feedback after a variable delay (0s, 4s, or 8s). Task 2 was identical to Task 1, except that participants learned and were tested on the identities of blurred pictures, rather than trivia question answers. A subsequent learning retention test demonstrated a significant effect of curiosity, but not feedback delay, on performance in the trivia task, and no significant effect of curiosity, but a negative effect of feedback delay, on performance in the blurred pictures task. Neither task found a significant interaction effect between curiosity and delay group, which fails to support the answer anticipation model of the delay-of-feedback benefit.

ContributorsMcDaniel, Layla (Author) / Brewer, Gene (Thesis director) / Pages, Erika (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
131971-Thumbnail Image.png
Description
Previous research demonstrated the overall efficacy of an embodied language intervention (EMBRACE) that taught pre-school children how to simulate (imagine) language in a heard narrative. However, EMBRACE was not effective for every child. To try to explain this variable response to the intervention, the video recordings made during the

Previous research demonstrated the overall efficacy of an embodied language intervention (EMBRACE) that taught pre-school children how to simulate (imagine) language in a heard narrative. However, EMBRACE was not effective for every child. To try to explain this variable response to the intervention, the video recordings made during the four-day intervention sessions were assessed and emotion was coded. Each session was emotion-coded for child emotions and for child-researcher emotions. The child specific emotions were 1) engagement in the task, this included level of participation in the activity, 2) motivation/attention to persist and complete the task, as well as stay focused, and 3) positive affect throughout the session. The child-researcher specific emotions were 1) engagement with each other, this involved how the child interacted with the researcher and under what context, and 2) researcher’s positive affect, this incorporated how enthusiastic and encouraging the researcher was throughout the session. It was hypothesized that effectiveness of the intervention would be directly correlated with the degree that the child displayed positive emotions during the intervention. Thus, the analysis of these emotions should highlight differences between the control and EMBRACE group and help to explain variability in effectiveness of the intervention. The results did indicate that children in the EMBRACE group generally had a significantly higher positive affect compared to the control group, but these results did not influence the ability for the child to effectively recall or moderate the EEG variables in the post-test. The results also showed that children who interacted with the researcher more tended to be in the EMBRACE group, whereas children who did not interact with the researcher more frequently were in the control group, showing that the EMBRACE intervention ended up being a more collaborative task.
ContributorsOtt, Lauren Ruth (Author) / Glenberg, Arthur (Thesis director) / Presson, Clark (Committee member) / Kupfer, Anne (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132362-Thumbnail Image.png
Description
In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an

In the study of the human brain’s ability to multitask, there are two perspectives: concurrent multitasking (performing multiple tasks simultaneously) and sequential multitasking (switching between tasks). The goal of this study is to investigate the human brain’s ability to “multitask” with multiple demanding stimuli of approximately equal concentration, from an electrophysiological perspective different than that of stimuli which don’t require full attention or exhibit impulsive multitasking responses. This study investigates the P3 component which has been experimentally proven to be associated with mental workload through information processing and cognitive function in visual and auditory tasks, where in the multitasking domain the greater attention elicited, the larger P3 waves are produced. This experiment compares the amplitude of the P3 component of individual stimulus presentation to that of multitasking trials, taking note of the brain workload. This study questions if the average wave amplitude in a multitasking ERP experiment will be the same as the grand average when performing the two tasks individually with respect to the P3 component. The hypothesis is that the P3 amplitude will be smaller in the multitasking trial than in the individual stimulus presentation, indicating that the brain is not actually concentrating on both tasks at once (sequential multitasking instead of concurrent) and that the brain is not focusing on each stimulus to the same degree when it was presented individually. Twenty undergraduate students at Barrett, the Honors College at Arizona State University (10 males and 10 females, with a mean age of 18.75 years, SD= 1.517) right handed, with normal or corrected visual acuity, English as first language, and no evidence of neurological compromise participated in the study. The experiment results revealed that one- hundred percent of participants undergo sequential multitasking in the presence of two demanding stimuli in the electrophysiological data, behavioral data, and subjective data. In this particular study, these findings indicate that the presence of additional demanding stimuli causes the workload of the brain to decrease as attention deviates in a bottleneck process to the multiple requisitions for focus, indicated by a reduced P3 voltage amplitude with the multitasking stimuli when compared to the independent. This study illustrates the feasible replication of P3 cognitive workload results for demanding stimuli, not only impulsive-response experiments, to suggest the brain’s tendency to undergo sequential multitasking when faced with multiple demanding stimuli. In brief, this study demonstrates that when higher cognitive processing is required to interpret and respond to the stimuli, the human brain results to sequential multitasking (task- switching, not concurrent multitasking) in the face of more challenging problems with each stimulus requiring a higher level of focus, workload, and attention.
ContributorsNeill, Ryan (Author) / Brewer, Gene (Thesis director) / Peter, Beate (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05