Matching Items (9)
Filtering by

Clear all filters

153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
156770-Thumbnail Image.png
Description
The current study investigated the task of coloring static images with multimedia learning to determine the impact on retention and transfer scores. After watching a multimedia video on the formation of lightning participants were assigned to either a passive, active, or constructive condition based on the ICAP Framework. Participants colored

The current study investigated the task of coloring static images with multimedia learning to determine the impact on retention and transfer scores. After watching a multimedia video on the formation of lightning participants were assigned to either a passive, active, or constructive condition based on the ICAP Framework. Participants colored static images on key concepts from the video, passive condition observed the images, active condition colored the images by applying the concepts, and the constructive condition colored the images by generating new ideas and concepts. The study did not support the hypothesis that the constructive condition would have increased retention and transfer scores over the active and passive conditions. The mental effort measures did not show significance among groups in relation to learning but perception measures did show an increase in participants enjoyment and engagement. Since the coloring craze has become more accepted for adults then could coloring be a way to increase participants learning through engagement.
ContributorsWilliams, Jennifer S (Author) / Craig, Scotty D. (Thesis advisor) / Roscoe, Rod (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2018
134293-Thumbnail Image.png
Description
Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being

Lie detection is used prominently in contemporary society for many purposes such as for pre-employment screenings, granting security clearances, and determining if criminals or potential subjects may or may not be lying, but by no means is not limited to that scope. However, lie detection has been criticized for being subjective, unreliable, inaccurate, and susceptible to deliberate manipulation. Furthermore, critics also believe that the administrator of the test also influences the outcome as well. As a result, the polygraph machine, the contemporary device used for lie detection, has come under scrutiny when used as evidence in the courts. The purpose of this study is to use three entirely different tools and concepts to determine whether eye tracking systems, electroencephalogram (EEG), and Facial Expression Emotion Analysis (FACET) are reliable tools for lie detection. This study found that certain constructs such as where the left eye is looking at in regard to its usual position and engagement levels in eye tracking and EEG respectively could distinguish between truths and lies. However, the FACET proved the most reliable tool out of the three by providing not just one distinguishing variable but seven, all related to emotions derived from movements in the facial muscles during the present study. The emotions associated with the FACET that were documented to possess the ability to distinguish between truthful and lying responses were joy, anger, fear, confusion, and frustration. In addition, an overall measure of the subject's neutral and positive emotional expression were found to be distinctive factors. The implications of this study and future directions are discussed.
ContributorsSeto, Raymond Hua (Author) / Atkinson, Robert (Thesis director) / Runger, George (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
134520-Thumbnail Image.png
Description
As one of the first attempts to research multimedia platforms for older adults when learning an online photo-editing software, this study examined whether an audio only, a text only, or a combination of an audio and text tutorial would be the most effective teaching method. Elderly adults aged 65 and

As one of the first attempts to research multimedia platforms for older adults when learning an online photo-editing software, this study examined whether an audio only, a text only, or a combination of an audio and text tutorial would be the most effective teaching method. Elderly adults aged 65 and older (N-45) were randomly assigned to one of the three conditions. They first went through a training phase that utilized their assigned condition to teach five tasks within the photo-editing program, and they were then tested on how well they learned these tasks as well as a transfer task. It was predicted that the multimedia condition would increase learning efficiency, produce more successes in the transfer task, and decrease cognitive load compared to the two unimodal conditions. The multimedia condition (text and audio) had no significant effect on transfer task successes or decreases in cognitive load compared to the unimodal conditions (text only and audio only). The multimedia condition, however, did produce significantly less errors on Tasks 2, 4, and 5 than the unimodal conditions. This suggests that redundancy principles may play an important role when designing learning platforms for elderly users, and that age needs to be considered as an additional factor during the technological design process.
ContributorsSwieczkowski, Hannah Elizabeth (Author) / Atkinson, Robert (Thesis director) / Chavez, Helen (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134133-Thumbnail Image.png
Description
Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the

Hackathons are 24-36 hour events where participants are encouraged to learn, collaborate, and build technological inventions with leaders, companies, and peers in the tech community. Hackathons have been sweeping the nation in the recent years especially at the collegiate level; however, there is no substantial research or documentation of the actual effects of hackathons especially at the collegiate level. This makes justifying the usage of valuable time and resources to host hackathons difficult for tech companies and academic institutions. This thesis specifically examines the effects of collegiate hackathons through running a collegiate hackathon known as Desert Hacks at Arizona State University (ASU). The participants of Desert Hacks were surveyed at the start and at the end of the event to analyze the effects. The results of the survey implicate that participants have grown in base computer programming skills, inclusion in the tech community, overall confidence, and motivation for the technological field. Through these results, this study can be used to help justify the necessity of collegiate hackathons and events similar.
ContributorsLe, Peter Thuan (Author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
131891-Thumbnail Image.png
Description
The relationship between user experience, learning, and psychology is complex. There are many rules and concepts that guide experience design. It is likely that some of the guidance is valid whereas other guidance is not. This explores some of that guidance and evaluates how they are linked to learning. Do

The relationship between user experience, learning, and psychology is complex. There are many rules and concepts that guide experience design. It is likely that some of the guidance is valid whereas other guidance is not. This explores some of that guidance and evaluates how they are linked to learning. Do the guidance’s made 25, 50, 100 years ago still hold true today? Additionally, the psychological background behind the way someone holds memory is important. Knowing how information is stored and processed helps educators provide the best learning experience possible. With an eye toward perception and cognition, this paper examines the relevance of the various pieces of guidance. The results suggest that, overall, this guidance is still valid and valuable to current learning trends and designs. This suggests that user experience designers for education need to pay attention to the guidance provided by psychology when designing learning management systems, placing content in a course, and choosing which aesthetics to follow.
ContributorsLapujade, Lily Ann (Author) / Branaghan, Russell (Thesis director) / Roscoe, Rod (Committee member) / Human Systems Engineering (Contributor, Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131373-Thumbnail Image.png
Description
The relationship between video games and education is something that has been studied extensively in academia. Based upon these studies a new concept was created, gamification. Gamification is the next step in video game research to analyze why video games enhance learning. The interest and research into this concept have

The relationship between video games and education is something that has been studied extensively in academia. Based upon these studies a new concept was created, gamification. Gamification is the next step in video game research to analyze why video games enhance learning. The interest and research into this concept have developed so much so that it has become its own topic area for research. This study is looking to analyze the effect that gamification has on not only learning, but also self-efficacy. Through a choose your own adventure game, the knowledge and self-efficacy of participants will be examined to observe the differences when learning difficult engineering concepts with and without gamification. It is expected that participants that experienced training through gamification will demonstrate deeper learning and higher self-efficacy than trained through a video. Furthermore, it is anticipated that some video trained participants’ self-efficacy will increase; however, their comprehension will be less than participants trained through gamification. The results of this study can help promote the interest in researching gamification and education, while influencing educators to corporate gamification elements when designing their courses. Moreover, this study continued through adaptation and integration into a statics forces class, investigated if the same results can be found within a classroom setting.
ContributorsKanechika, Amber (Author) / Craig, Scotty (Thesis director) / Roscoe, Rod (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The advancement of technology has transformed information consumption into an accessible and flexible process. The open learning ecosystem that exists online relies on self-direction. Learners are able to effectively fulfill personal learning goals with preferred content forms, specifically by utilizing Massive Open Online Courses (MOOC). It is essential to investigate

The advancement of technology has transformed information consumption into an accessible and flexible process. The open learning ecosystem that exists online relies on self-direction. Learners are able to effectively fulfill personal learning goals with preferred content forms, specifically by utilizing Massive Open Online Courses (MOOC). It is essential to investigate the role of mediums in distributed learning to initiate human-centric design changes that best support the learner. This study provides insight into how choice influences self-learning and highlights the major engagement difficulties of MOOCs. Significant attrition was experienced while issuing text and audio material to participants for three weeks. Although this prevented valid statistical tests from being run, it was clear that text was the most desirable and effective medium. Students that read exhibited the highest comprehension levels and selected it as their de-facto consumption method even if audio was made available. Since this study involved complex topics, this supported the transient information effect. Future studies should focus deeply on the structure of online courses by implementing personable engagement features that improve overall participation rate.
ContributorsWoods, Quintin (Author) / Roscoe, Rod (Thesis advisor) / Craig, Scotty (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2019