Matching Items (9)
Filtering by

Clear all filters

136370-Thumbnail Image.png
Description
Increased investigation into the development of macromolecular fluorophores has resulted in the synthesis and discovery of several potential candidates. These include modified and polymeric based dendritic structures, hyperbranched polymers and linear polymers. Strong inherent blue photoluminescence has been recently described in linear polyamine polymers in the absence of any chemical

Increased investigation into the development of macromolecular fluorophores has resulted in the synthesis and discovery of several potential candidates. These include modified and polymeric based dendritic structures, hyperbranched polymers and linear polymers. Strong inherent blue photoluminescence has been recently described in linear polyamine polymers in the absence of any chemical modifications. Here we describe the screening of amine/polyamine compounds for inherent photoluminescence. Several compounds that exhibited strong inherent blue photoluminescence following excitation with UV light were identified. Furthermore we demonstrated successful synthesis of poly(amino ether) polymers as well as chemically cross-linked poly(amino ether) thermosets with the lead Pentaethylenehexamine which was found to have strong inherent blue photoluminescence. The polymers and thermosets were found to retain the photoluminescent properties of the original lead compound. The polymers and thermosets were investigated for their ability to sequester heavy metals from aqueous solutions. An increased decrease in initial photoluminescence was observed as the materials were incubated with increasing metal salt concentration as a result of metal binding sequestration. The poly(amino ether) polymers were found to have higher sensitivity for metal sequestration when compared to equivalent amount of linear 25 kDa polyethylenimine. The strong inherent blue photoluminescence and the ease of synthesis of the poly(amino ether) polymers and thermosets give these materials strong potential for future applications as sensors.
ContributorsVu, Jeffrey (Co-author) / Ramos, James (Co-author) / Rege, Kaushal (Thesis director) / Godeshala, Sudakhar (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
134702-Thumbnail Image.png
Description
This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA and poly(ethylene glycol) diacrylate (PEG-DA) mixtures was assessed for 5.0

This study aims to provide a foundation for future work on photo-responsive polymer composite materials to be utilized in additive manufacturing processes. The curing rate of 2,2-dimethoxy-2-phenyl-acetophenone (DMPA) in thin (<20 µm) and thick (>2 mm) layers of DMPA and poly(ethylene glycol) diacrylate (PEG-DA) mixtures was assessed for 5.0 w/v% (grams per 100 mL) concentrations of DMPA dissolved in PEG-DA. The polymerization rate and quality of curing was found to decrease as the concentration of DMPA increased beyond 1.0 w/v%; thus, confirming the existence of an optimum photo-initiator concentration for a specific sheet thickness. The optimum photo-initiator concentration for a 3-3.1 mm thick sheet of PEG-DA microstructure was determined to be between 0.3 and 0.38 w/v% DMPA. The addition of 1,6-hexanediol or 1,3-butanediol to the optimum photo-initiator concentrated solution of DMPA and PEG-DA was found to increase the Tg of the samples; however, the samples could not fully cure within 40-50 s, which suggested a decrease in polymerization rate. Lastly, the DMPA photo-initiator does not produce gaseous byproducts and is translucent when fully cured, which makes it attractive for infusion with strengthening materials because quality light penetration is paramount to quick polymerization rates. It is recommended that more trials be conducted to evaluate the mechanical properties of the optimum curing rate for DMPA and PEG-DA microstructures as well as a mechanical property comparison following the addition of either of the two alcohols.
ContributorsPiper, Tyler Irvin (Author) / Green, Green (Thesis director) / Lind, Mary Laura (Committee member) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134518-Thumbnail Image.png
Description
This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and

This study details the construction and operation of a dry-jet wet spinning apparatus for extruding hollow fiber membranes (HFMs). The main components of the apparatus are a spinneret, a coagulation bath, and an automatic collection reel. Continuous fiber formation was achieved using two syringe pumps simultaneously delivering polymer dope and bore fluid to the spinneret. Based on apparatus runs performed with Polysulfone (PSF) dopes dissolved in N,N-Dimethylacetamide and supporting rheological analysis, the entanglement concentration, ce, was identified as a minimum processing threshold for creating HFMs. Similarly, significant increases in the ultimate tensile strength, fracture strain, and Young's modulus for extruded HFMs were observed as polymer dope concentration was increased at levels near ce. Beyond this initial increase, subsequent tests at higher PSF concentrations yielded diminishing changes in mechanical properties, suggesting an asymptotic approach to a point where the trend would cease. Without further research, it is theorized that this point falls on a transition from the semidiute entangled to concentrated concentration regimes. SEM imaging of samples revealed the formation of grooved structures on the inner surface of samples, which was determined to be a result of the low flowrate and polymer dope concentrations used in processing the HFMs during apparatus runs. Based on continued operation of the preliminary apparatus design, many areas of improvement were noted. Namely, these consisted of controlling the collector speed, eliminating rubbing of nascent fibers against the edge of the coagulation bath by installing an elevated roller, and replacing tygon tubing for the polymer line with a luer lock adapter for direct syringe attachment to the spinneret.
ContributorsBridge, Alexander Thomas (Author) / Green, Matthew D. (Thesis director) / Lin, Jerry Y. S. (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134977-Thumbnail Image.png
Description
Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC,

Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC, and none for electrospun PNC fibers. A simulation model was developed to quantify the effects of nanoparticle volume loading and fiber to particle diameter ratios on the dispersion in a nanofiber. The dispersion was characterized using the interparticle distance along the fiber. Distributions of the interparticle distance were fit to Weibull distributions and a two-parameter empirical equation for the mean and standard deviation was found. A dispersion factor was defined to quantify the dispersion along the polymer fiber. This model serves as a standard for comparison for future experimental studies through its comparability with microscopy techniques, and as way to quantify and predict dispersion in polymer-nanoparticle electrospinning systems with a single performance metric.
ContributorsBalzer, Christopher James (Author) / Mu, Bin (Thesis director) / Armstrong, Mitchell (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Ather Arop is bilingual. He is also fluent in Spanish and speaks some French. “Lost Boys Found” is an ongoing, interdisciplinary project that is collecting, recording and archiving the oral histories of the Lost Boys/Girls of Sudan. The collection is a work-in-progress, seeking to record the oral history of as

Ather Arop is bilingual. He is also fluent in Spanish and speaks some French. “Lost Boys Found” is an ongoing, interdisciplinary project that is collecting, recording and archiving the oral histories of the Lost Boys/Girls of Sudan. The collection is a work-in-progress, seeking to record the oral history of as many Lost Boys/Girls as are willing, and will be used in a future book.
ContributorsArop, Ather (Interviewee) / Amparano, Julie (Director) / Garcia, James (Interviewer) / MacNeill, MacNeill (Editor)
Created2017-10-14
Description
This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety of industries (personalized technology, medical treatment, replacement of metals, etc).
ContributorsMillman, Jeremy (Author) / Xie, Renxaun (Thesis director) / Green, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
164958-Thumbnail Image.png
Description

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety of industries (personalized technology, medical treatment, replacement of metals, etc).

ContributorsMillman, Jeremy (Author) / Xie, Renxaun (Thesis director) / Green, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
164959-Thumbnail Image.png
Description

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety

This honors thesis covers an overview of the the motivation, objectives, and projects of the Xie Research Group, focusing on the mechanical effect of dopants (through p-doping) on the structural domains of conjugated polymers (specifically P3DT). The ability to sustainably 3D-print conjugated polymers has the potential to impact a variety of industries (personalized technology, medical treatment, replacement of metals, etc).

ContributorsMillman, Jeremy (Author) / Xie, Renxaun (Thesis director) / Green, Matthew (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2022-05
165546-Thumbnail Image.png
Description

The outlying cities of Phoenix's West Metropolitan experienced rapid growth in the past ten years. This trend is only going to continue with an average expected growth of 449-891% between 2000 and 2035 (ADOT, 2012). Phoenix is not new to growth and has consistently seen swaths of people added to

The outlying cities of Phoenix's West Metropolitan experienced rapid growth in the past ten years. This trend is only going to continue with an average expected growth of 449-891% between 2000 and 2035 (ADOT, 2012). Phoenix is not new to growth and has consistently seen swaths of people added to its population. This raises the question of what happened to the people who lived in Phoenix's West Valley during this period of rapid change and growth in their communities? What are their stories and what do their stories reveal about the broader public history of change in Phoenix's West Valley? In consideration of these questions, the community oral histories of eight residents from the West Valley were collected to add historical nuance to the limited archival records available in the area. From this collection, the previous notion of "post-war boomtowns” describing Phoenix’s West Valley was revealed to be highly inaccurate and dismissive of the residents' experiences who lived and formed their lives there.

ContributorsGeiser, Samantha (Author) / Campanile, Isabella (Co-author) / Martinez Orozco, Rafael (Thesis director) / O'Flaherty, Katherine (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05