Matching Items (5)
Filtering by

Clear all filters

136378-Thumbnail Image.png
Description
While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by

While there is extensive information available about organizations that receive donated organs for transplant, much less is known about those that accept tissue and whole bodies for medical education and research. Throughout the United States, nontransplant anatomical donation organizations exist within an ambiguous sector of the donation industry, unencumbered by federal regulations. Although these companies adhere to the Uniform Anatomical Gift Act, the lack of a single entity responsible for overseeing their operations has led to public skepticism and animosity among competing businesses. Legislation has the potential to legitimize the industry. For it to be successful, however, the intricacies of a complex market that deals directly with the movement of human remains and intangible issues of human integrity and morality, must be thoroughly understood.
ContributorsGlynn, Emily Sanders (Author) / Brian, Jennifer (Thesis director) / Fisher, Rebecca (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / Department of English (Contributor)
Created2015-05
173112-Thumbnail Image.png
Description

In 2018, He Jiankui uploaded a series of videos to a YouTube channel titled “The He Lab” that detailed one of the first instances of a successful human birth after genome editing had been performed on an embryo using CRISPR-cas9. CRISPR-cas9 is a genome editing tool derived from bacteria that

In 2018, He Jiankui uploaded a series of videos to a YouTube channel titled “The He Lab” that detailed one of the first instances of a successful human birth after genome editing had been performed on an embryo using CRISPR-cas9. CRISPR-cas9 is a genome editing tool derived from bacteria that can be used to cut out and replace specific sequences of DNA. He genetically modified embryos at his lab in Shenzhen, China, to make them immune to contracting HIV through indirect perinatal transmission from their father, who was infected with the virus. HIV is a virus that attacks the immune cells of its host and weakens their ability to fight off diseases. At the time of He’s experiment, various treatments already existed at that could prevent the fetuses from contracting HIV without the need for gene surgery. Nonetheless, He’s experiment led to one of the first successful births of fetuses resulting from genetically modified embryos. He kept his experiment secret until he uploaded the videos announcing the birth of the fetuses, born as two twin girls. The experiment discussed in the videos was successful, but many scientists criticized the experiment due to ethical concerns with the way He conducted it.

Created2021-07-31
173024-Thumbnail Image.png
Description

In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the

In 2006, bioethicist Jason Scott Robert published “The Science and Ethics of Making Part-Human Animals in Stem Cell Biology” in The FASEB Journal. There, he reviews the scientific and ethical justifications and restrictions on creating part-human animals. Robert describes part-human animals, otherwise known as chimeras, as those resulting from the intentional combination of human and nonhuman cells, tissues, or organs at any stage of development. He specifically criticizes restrictions against creating part-human animals made by the National Academy of Sciences, or NAS, in 2005, arguing that while they ensure that such research is morally justifiable, they might limit scientists from conducting useful science using part-human animals or entities. Robert challenges the moral rationales behind prohibiting chimera research, arguing that they may impede scientists from conducting research that could have important benefits to biology and medicine, and suggests how to balance the conflicting moral and scientific needs of such science.

Created2021-05-25
172961-Thumbnail Image.png
Description

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance

In 2015, Revive & Restore launched the Woolly Mammoth Revival Project with a goal of engineering a creature with genes from the woolly mammoth and introducing it back into the tundra to combat climate change. Revive & Restore is a nonprofit in California that uses genome editing technologies to enhance conservation efforts in sometimes controversial ways. In order to de-extinct the woolly mammoth, researchers theorize that they can manipulate the genome of the Asian elephant, which is the mammoth’s closest living evolutionary relative, to make it resemble the genome of the extinct woolly mammoth. While their goal is to create a new elephant-mammoth hybrid species, or a mammophant, that looks and functions like the extinct woolly mammoth, critics have suggested researchers involved in the project have misled and exaggerated the process. As of 2021, researchers have not yet succeeded in their efforts to de-extinct the woolly mammoth, but have expressed that it may become a reality within a decade.

Created2021-01-19