Matching Items (3)
Filtering by

Clear all filters

153429-Thumbnail Image.png
Description
From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce

From 2D planar MOSFET to 3D FinFET, the geometry of semiconductor devices is getting more and more complex. Correspondingly, the number of mesh grid points increases largely to maintain the accuracy of carrier transport and heat transfer simulations. By substituting the conventional uniform mesh with non-uniform mesh, one can reduce the number of grid points. However, the problem of how to solve governing equations on non-uniform mesh is then imposed to the numerical solver. Moreover, if a device simulator is integrated into a multi-scale simulator, the problem size will be further increased. Consequently, there exist two challenges for the current numerical solver. One is to increase the functionality to accommodate non-uniform mesh. The other is to solve governing physical equations fast and accurately on a large number of mesh grid points.

This research rst discusses a 2D planar MOSFET simulator and its numerical solver, pointing out its performance limit. By analyzing the algorithm complexity, Multigrid method is proposed to replace conventional Successive-Over-Relaxation method in a numerical solver. A variety of Multigrid methods (standard Multigrid, Algebraic Multigrid, Full Approximation Scheme, and Full Multigrid) are discussed and implemented. Their properties are examined through a set of numerical experiments. Finally, Algebraic Multigrid, Full Approximation Scheme and Full Multigrid are integrated into one advanced numerical solver based on the exact requirements of a semiconductor device simulator. A 2D MOSFET device is used to benchmark the performance, showing that the advanced Multigrid method has higher speed, accuracy and robustness.
ContributorsGuo, Xinchen (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen (Committee member) / Ferry, David (Committee member) / Arizona State University (Publisher)
Created2015
158605-Thumbnail Image.png
Description
Advanced and mature computer simulation methods exist in fluid dynamics, elec-

tromagnetics, semiconductors, chemical transport, and even chemical and material

electronic structure. However, few general or accurate methods have been developed

for quantum photonic devices. Here, a novel approach utilizing phase-space quantum

mechanics is developed to model photon transport in ring resonators, a form

Advanced and mature computer simulation methods exist in fluid dynamics, elec-

tromagnetics, semiconductors, chemical transport, and even chemical and material

electronic structure. However, few general or accurate methods have been developed

for quantum photonic devices. Here, a novel approach utilizing phase-space quantum

mechanics is developed to model photon transport in ring resonators, a form of en-

tangled pair source. The key features the model needs to illustrate are the emergence

of non-classicality and entanglement between photons due to nonlinear effects in the

ring. The quantum trajectory method is subsequently demonstrated on a sequence

of elementary models and multiple aspects of the ring resonator itself.
ContributorsWelland, Ian Matthew (Author) / Ferry, David K. (Thesis advisor) / Goodnick, Stephen (Thesis advisor) / Zhao, Yuji (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020
156019-Thumbnail Image.png
Description
Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a

Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) towards shorter channel lengths, has lead to an increasing importance of quantum effects on the device performance. Until now, a semi-classical model based on Monte Carlo method for instance, has been sufficient to address these issues in silicon, and arrive at a reasonably good fit to experimental mobility data. But as the semiconductor world moves towards 10nm technology, many of the basic assumptions in this method, namely the very fundamental Fermi’s golden rule come into question. The derivation of the Fermi’s golden rule assumes that the scattering is infrequent (therefore the long time limit) and the collision duration time is zero. This thesis overcomes some of the limitations of the above approach by successfully developing a quantum mechanical simulator that can model the low-field inversion layer mobility in silicon MOS capacitors and other inversion layers as well. It solves for the scattering induced collisional broadening of the states by accounting for the various scattering mechanisms present in silicon through the non-equilibrium based near-equilibrium Green’s Functions approach, which shall be referred to as near-equilibrium Green’s Function (nEGF) in this work. It adopts a two-loop approach, where the outer loop solves for the self-consistency between the potential and the subband sheet charge density by solving the Poisson and the Schrödinger equations self-consistently. The inner loop solves for the nEGF (renormalization of the spectrum and the broadening of the states), self-consistently using the self-consistent Born approximation, which is then used to compute the mobility using the Green-Kubo Formalism.
ContributorsJayaram Thulasingam, Gokula Kannan (Author) / Vasileska, Dragica (Thesis advisor) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2017