Matching Items (4)
Filtering by

Clear all filters

134769-Thumbnail Image.png
Description
In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs

In order to adequately introduce students to computer science and robotics in an exciting and engaging manner certain teaching techniques should be used. In recent years some of the most popular paradigms are Visual Programming Languages. Visual Programming Languages are meant to introduce problem solving skills and basic programming constructs inherent to all modern day languages by allowing users to write programs visually as opposed to textually. By bypassing the need to learn syntax students can focus on the thinking behind developing an algorithm and see immediate results that help generate excitement for the field and reduce disinterest due to startup complexity and burnout. The Introduction to Engineering course at Arizona State University supports this approach by teaching students the basics of autonomous maze traversing algorithms and using ASU VIPLE, a Visual Programming Language developed to connect with and direct real-world robots. However, some startup time is needed to learn how to interface with these robots using ASU VIPLE. That is why the HTML5 Autonomous Robot Web Simulator was created -- by encouraging students to use the simulator the problem solving behind autonomous maze traversing algorithms can be introduced more quickly and with immediate affirmation. Our goal was to improve this simulator and add features so that the simulator could be accessed and used for a more wide variety of introductory Computer Science lessons. Features scattered across past implementations of robotic simulators were aggregated in a cross platform solution. Upon initial development, a classroom test group revealed usability concerns and a demonstration of students' mental models. Mean time for task completion was 8.1min - compared to 2min for the authors. The simulator was updated in response to test group feedback and new instructor requirements. The new implementation reduces programming overhead while maintaining a learning environment with support for even the most complex applications.
ContributorsRodewald, Spencer (Co-author, Co-author) / Patel, Ankit (Co-author) / Chen, Yinong (Thesis director) / Chattin, Linda (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135981-Thumbnail Image.png
Description
Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries.

Education in computer science is a difficult endeavor, with learning a new programing language being a barrier to entry, especially for college freshman and high school students. Learning a first programming language requires understanding the syntax of the language, the algorithms to use, and any additional complexities the language carries. Often times this becomes a deterrent from learning computer science at all. Especially in high school, students may not want to spend a year or more simply learning the syntax of a programming language. In order to overcome these issues, as well as to mitigate the issues caused by Microsoft discontinuing their Visual Programming Language (VPL), we have decided to implement a new VPL, ASU-VPL, based on Microsoft's VPL. ASU-VPL provides an environment where users can focus on algorithms and worry less about syntactic issues. ASU-VPL was built with the concepts of Robot as a Service and workflow based development in mind. As such, ASU-VPL is designed with the intention of allowing web services to be added to the toolbox (e.g. WSDL and REST services). ASU-VPL has strong support for multithreaded operations, including event driven development, and is built with Microsoft VPL users in mind. It provides support for many different robots, including Lego's third generation robots, i.e. EV3, and any open platform robots. To demonstrate the capabilities of ASU-VPL, this paper details the creation of an Intel Edison based robot and the use of ASU-VPL for programming both the Intel based robot and an EV3 robot. This paper will also discuss differences between ASU-VPL and Microsoft VPL as well as differences between developing for the EV3 and for an open platform robot.
ContributorsDe Luca, Gennaro (Author) / Chen, Yinong (Thesis director) / Cheng, Calvin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
147956-Thumbnail Image.png
Description

Music streaming services have affected the music industry from both a financial and legal standpoint. Their current business model affects stakeholders such as artists, users, and investors. These services have been scrutinized recently for their imperfect royalty distribution model. Covid-19 has made these discussions even more relevant as touring income

Music streaming services have affected the music industry from both a financial and legal standpoint. Their current business model affects stakeholders such as artists, users, and investors. These services have been scrutinized recently for their imperfect royalty distribution model. Covid-19 has made these discussions even more relevant as touring income has come to a halt for musicians and the live entertainment industry. <br/>Under the current per-stream model, it is becoming exceedingly hard for artists to make a living off of streams. This forces artists to tour heavily as well as cut corners to create what is essentially “disposable art”. Rapidly releasing multiple projects a year has become the norm for many modern artists. This paper will examine the licensing framework, royalty payout issues, and propose a solution.

ContributorsKoudssi, Zakaria Corley (Author) / Sadusky, Brian (Thesis director) / Koretz, Lora (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131233-Thumbnail Image.png
Description
Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library,

Although Spotify’s extensive library of songs are often seen broken up by “Top 100” and main lyrical genres, these categories are primarily based on popularity, artist and general mood alone. If a user wanted to create a playlist based on specific or situationally specific qualifiers from their own downloaded library, he/she would have to hand pick songs that fit the mold and create a new playlist. This is a time consuming process that may not produce the most efficient result due to human error. The objective of this project, therefore, was to develop an application to streamline this process, optimize efficiency, and fill this user need.

Song Sift is an application built using Angular that allows users to filter and sort their song library to create specific playlists using the Spotify Web API. Utilizing the audio feature data that Spotify attaches to every song in their library, users can filter their downloaded Spotify songs based on four main attributes: (1) energy (how energetic a song sounds), (2) danceability (how danceable a song is), (3) valence (how happy a song sounds), and (4) loudness (average volume of a song). Once the user has created a playlist that fits their desired genre, he/she can easily export it to their Spotify account with the click of a button.
ContributorsDiMuro, Louis (Author) / Balasooriya, Janaka (Thesis director) / Chen, Yinong (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05