Matching Items (4)
Filtering by

Clear all filters

155207-Thumbnail Image.png
Description
The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns can be falsely detected as if originating from the actual target. Various data association methods and multiple hypothesis filtering

The radar performance of detecting a target and estimating its parameters can deteriorate rapidly in the presence of high clutter. This is because radar measurements due to clutter returns can be falsely detected as if originating from the actual target. Various data association methods and multiple hypothesis filtering approaches have been considered to solve this problem. Such methods, however, can be computationally intensive for real time radar processing. This work proposes a new approach that is based on the unsupervised clustering of target and clutter detections before target tracking using particle filtering. In particular, Gaussian mixture modeling is first used to separate detections into two Gaussian distinct mixtures. Using eigenvector analysis, the eccentricity of the covariance matrices of the Gaussian mixtures are computed and compared to threshold values that are obtained a priori. The thresholding allows only target detections to be used for target tracking. Simulations demonstrate the performance of the new algorithm and compare it with using k-means for clustering instead of Gaussian mixture modeling.
ContributorsFreeman, Matthew Gregory (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2016
157824-Thumbnail Image.png
Description
The human brain controls a person's actions and reactions. In this study, the main objective is to quantify reaction time towards a change of visual event and figuring out the inherent relationship between response time and corresponding brain activities. Furthermore, which parts of the human brain are responsible for the

The human brain controls a person's actions and reactions. In this study, the main objective is to quantify reaction time towards a change of visual event and figuring out the inherent relationship between response time and corresponding brain activities. Furthermore, which parts of the human brain are responsible for the reaction time is also of interest. As electroencephalogram (EEG) signals are proportional to the change of brain functionalities with time, EEG signals from different locations of the brain are used as indicators of brain activities. As the different channels are from different parts of our brain, identifying most relevant channels can provide the idea of responsible brain locations. In this study, response time is estimated using EEG signal features from time, frequency and time-frequency domain. Regression-based estimation using the full data-set results in RMSE (Root Mean Square Error) of 99.5 milliseconds and a correlation value of 0.57. However, the addition of non-EEG features with the existing features gives RMSE of 101.7 ms and a correlation value of 0.58. Using the same analysis with a custom data-set provides RMSE of 135.7 milliseconds and a correlation value of 0.69. Classification-based estimation provides 79% & 72% of accuracy for binary and 3-class classication respectively. Classification of extremes (high-low) results in 95% of accuracy. Combining recursive feature elimination, tree-based feature importance, and mutual feature information method, important channels, and features are isolated based on the best result. As human response time is not solely dependent on brain activities, it requires additional information about the subject to improve the reaction time estimation.
ContributorsChowdhury, Mohammad Samin Nur (Author) / Bliss, Daniel W (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2019
157645-Thumbnail Image.png
Description
Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of

Disentangling latent spaces is an important research direction in the interpretability of unsupervised machine learning. Several recent works using deep learning are very effective at producing disentangled representations. However, in the unsupervised setting, there is no way to pre-specify which part of the latent space captures specific factors of variations. While this is generally a hard problem because of the non-existence of analytical expressions to capture these variations, there are certain factors like geometric

transforms that can be expressed analytically. Furthermore, in existing frameworks, the disentangled values are also not interpretable. The focus of this work is to disentangle these geometric factors of variations (which turn out to be nuisance factors for many applications) from the semantic content of the signal in an interpretable manner which in turn makes the features more discriminative. Experiments are designed to show the modularity of the approach with other disentangling strategies as well as on multiple one-dimensional (1D) and two-dimensional (2D) datasets, clearly indicating the efficacy of the proposed approach.
ContributorsKoneripalli Seetharam, Kaushik (Author) / Turaga, Pavan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
158864-Thumbnail Image.png
Description
Infants born before 37 weeks of pregnancy are considered to be preterm. Typically, preterm infants have to be strictly monitored since they are highly susceptible to health problems like hypoxemia (low blood oxygen level), apnea, respiratory issues, cardiac problems, neurological problems as well as an increased chance of long-term health

Infants born before 37 weeks of pregnancy are considered to be preterm. Typically, preterm infants have to be strictly monitored since they are highly susceptible to health problems like hypoxemia (low blood oxygen level), apnea, respiratory issues, cardiac problems, neurological problems as well as an increased chance of long-term health issues such as cerebral palsy, asthma and sudden infant death syndrome. One of the leading health complications in preterm infants is bradycardia - which is defined as the slower than expected heart rate, generally beating lower than 60 beats per minute. Bradycardia is often accompanied by low oxygen levels and can cause additional long term health problems in the premature infant.The implementation of a non-parametric method to predict the onset of brady- cardia is presented. This method assumes no prior knowledge of the data and uses kernel density estimation to predict the future onset of bradycardia events. The data is preprocessed, and then analyzed to detect the peaks in the ECG signals, following which different kernels are implemented to estimate the shared underlying distribu- tion of the data. The performance of the algorithm is evaluated using various metrics and the computational challenges and methods to overcome them are also discussed.
It is observed that the performance of the algorithm with regards to the kernels used are consistent with the theoretical performance of the kernel as presented in a previous work. The theoretical approach has also been automated in this work and the various implementation challenges have been addressed.
ContributorsMitra, Sinjini (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Moraffah, Bahman (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2020