Matching Items (2)
Filtering by

Clear all filters

Description
In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.
ContributorsGupta, Sidharth (Author) / Kim, Seungchan (Thesis advisor) / Welfert, Bruno (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
155323-Thumbnail Image.png
Description
The three-dimensional flow contained in a rapidly rotating circular

split cylinder is studied numerically solving the Navier--Stokes

equations. The cylinder is completely filled with fluid

and is split at the midplane. Three different types of boundary

conditions were imposed, leading to a variety of instabilities and

complex flow dynamics.

The first configuration has a strong

The three-dimensional flow contained in a rapidly rotating circular

split cylinder is studied numerically solving the Navier--Stokes

equations. The cylinder is completely filled with fluid

and is split at the midplane. Three different types of boundary

conditions were imposed, leading to a variety of instabilities and

complex flow dynamics.

The first configuration has a strong background rotation and a small

differential rotation between the two halves. The axisymmetric flow

was first studied identifying boundary layer instabilities which

produce inertial waves under some conditions. Limit cycle states and

quasiperiodic states were found, including some period doubling

bifurcations. Then, a three-dimensional study was conducted

identifying low and high azimuthal wavenumber rotating waves due to

G’ortler and Tollmien–-Schlichting type instabilities. Over most of

the parameter space considered, quasiperiodic states were found where

both types of instabilities were present.

In the second configuration, both cylinder halves are in exact

counter-rotation, producing an O(2) symmetry in the system. The basic state flow dynamic

is dominated by the shear layer created

in the midplane. By changing the speed rotation and the aspect ratio

of the cylinder, the flow loses symmetries in a variety of ways

creating static waves, rotating waves, direction reversing waves and

slow-fast pulsing waves. The bifurcations, including infinite-period

bifurcations, were characterized and the flow dynamics was elucidated.

Additionally, preliminary experimental results for this case are

presented.

In the third set up, with oscillatory boundary conditions, inertial

wave beams were forced imposing a range of frequencies. These beams

emanate from the corner of the cylinder and from the split at the

midplane, leading to destructive/constructive interactions which

produce peaks in vorticity for some specific frequencies. These

frequencies are shown to be associated with the resonant Kelvin

modes. Furthermore, a study of the influence of imposing a phase

difference between the oscillations of the two halves of the cylinder

led to the interesting result that different Kelvin

modes can be excited depending on the phase difference.
ContributorsGutierrez Castillo, Paloma (Author) / Lopez, Juan M. (Thesis advisor) / Herrmann, Marcus (Committee member) / Platte, Rodrigo (Committee member) / Welfert, Bruno (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2017