Matching Items (2)
Filtering by

Clear all filters

Description
In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably

In many classication problems data samples cannot be collected easily, example in drug trials, biological experiments and study on cancer patients. In many situations the data set size is small and there are many outliers. When classifying such data, example cancer vs normal patients the consequences of mis-classication are probably more important than any other data type, because the data point could be a cancer patient or the classication decision could help determine what gene might be over expressed and perhaps a cause of cancer. These mis-classications are typically higher in the presence of outlier data points. The aim of this thesis is to develop a maximum margin classier that is suited to address the lack of robustness of discriminant based classiers (like the Support Vector Machine (SVM)) to noise and outliers. The underlying notion is to adopt and develop a natural loss function that is more robust to outliers and more representative of the true loss function of the data. It is demonstrated experimentally that SVM's are indeed susceptible to outliers and that the new classier developed, here coined as Robust-SVM (RSVM), is superior to all studied classier on the synthetic datasets. It is superior to the SVM in both the synthetic and experimental data from biomedical studies and is competent to a classier derived on similar lines when real life data examples are considered.
ContributorsGupta, Sidharth (Author) / Kim, Seungchan (Thesis advisor) / Welfert, Bruno (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
154804-Thumbnail Image.png
Description
Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and

Divergence-free vector field interpolants properties are explored on uniform and scattered nodes, and also their application to fluid flow problems. These interpolants may be applied to physical problems that require the approximant to have zero divergence, such as the velocity field in the incompressible Navier-Stokes equations and the magnetic and electric fields in the Maxwell's equations. In addition, the methods studied here are meshfree, and are suitable for problems defined on complex domains, where mesh generation is computationally expensive or inaccurate, or for problems where the data is only available at scattered locations.

The contributions of this work include a detailed comparison between standard and divergence-free radial basis approximations, a study of the Lebesgue constants for divergence-free approximations and their dependence on node placement, and an investigation of the flat limit of divergence-free interpolants. Finally, numerical solvers for the incompressible Navier-Stokes equations in primitive variables are implemented using discretizations based on traditional and divergence-free kernels. The numerical results are compared to reference solutions obtained with a spectral

method.
ContributorsAraujo Mitrano, Arthur (Author) / Platte, Rodrigo (Thesis advisor) / Wright, Grady (Committee member) / Welfert, Bruno (Committee member) / Gelb, Anne (Committee member) / Renaut, Rosemary (Committee member) / Arizona State University (Publisher)
Created2016