Matching Items (4)
Filtering by

Clear all filters

153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
154099-Thumbnail Image.png
Description
Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks.
ContributorsZou, Na (Author) / Li, Jing (Thesis advisor) / Baydogan, Mustafa (Committee member) / Borror, Connie (Committee member) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2015
154558-Thumbnail Image.png
Description
Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear

Feature learning and the discovery of nonlinear variation patterns in high-dimensional data is an important task in many problem domains, such as imaging, streaming data from sensors, and manufacturing. This dissertation presents several methods for learning and visualizing nonlinear variation in high-dimensional data. First, an automated method for discovering nonlinear variation patterns using deep learning autoencoders is proposed. The approach provides a functional mapping from a low-dimensional representation to the original spatially-dense data that is both interpretable and efficient with respect to preserving information. Experimental results indicate that deep learning autoencoders outperform manifold learning and principal component analysis in reproducing the original data from the learned variation sources.

A key issue in using autoencoders for nonlinear variation pattern discovery is to encourage the learning of solutions where each feature represents a unique variation source, which we define as distinct features. This problem of learning distinct features is also referred to as disentangling factors of variation in the representation learning literature. The remainder of this dissertation highlights and provides solutions for this important problem.

An alternating autoencoder training method is presented and a new measure motivated by orthogonal loadings in linear models is proposed to quantify feature distinctness in the nonlinear models. Simulated point cloud data and handwritten digit images illustrate that standard training methods for autoencoders consistently mix the true variation sources in the learned low-dimensional representation, whereas the alternating method produces solutions with more distinct patterns.

Finally, a new regularization method for learning distinct nonlinear features using autoencoders is proposed. Motivated in-part by the properties of linear solutions, a series of learning constraints are implemented via regularization penalties during stochastic gradient descent training. These include the orthogonality of tangent vectors to the manifold, the correlation between learned features, and the distributions of the learned features. This regularized learning approach yields low-dimensional representations which can be better interpreted and used to identify the true sources of variation impacting a high-dimensional feature space. Experimental results demonstrate the effectiveness of this method for nonlinear variation pattern discovery on both simulated and real data sets.
ContributorsHoward, Phillip (Author) / Runger, George C. (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Mirchandani, Pitu (Committee member) / Apley, Daniel (Committee member) / Arizona State University (Publisher)
Created2016
155361-Thumbnail Image.png
Description
This dissertation proposes a new set of analytical methods for high dimensional physiological sensors. The methodologies developed in this work were motivated by problems in learning science, but also apply to numerous disciplines where high dimensional signals are present. In the education field, more data is now available from traditional

This dissertation proposes a new set of analytical methods for high dimensional physiological sensors. The methodologies developed in this work were motivated by problems in learning science, but also apply to numerous disciplines where high dimensional signals are present. In the education field, more data is now available from traditional sources and there is an important need for analytical methods to translate this data into improved learning. Affecting Computing which is the study of new techniques that develop systems to recognize and model human emotions is integrating different physiological signals such as electroencephalogram (EEG) and electromyogram (EMG) to detect and model emotions which later can be used to improve these learning systems.

The first contribution proposes an event-crossover (ECO) methodology to analyze performance in learning environments. The methodology is relevant to studies where it is desired to evaluate the relationships between sentinel events in a learning environment and a physiological measurement which is provided in real time.

The second contribution introduces analytical methods to study relationships between multi-dimensional physiological signals and sentinel events in a learning environment. The methodology proposed learns physiological patterns in the form of node activations near time of events using different statistical techniques.

The third contribution addresses the challenge of performance prediction from physiological signals. Features from the sensors which could be computed early in the learning activity were developed for input to a machine learning model. The objective is to predict success or failure of the student in the learning environment early in the activity. EEG was used as the physiological signal to train a pattern recognition algorithm in order to derive meta affective states.

The last contribution introduced a methodology to predict a learner's performance using Bayes Belief Networks (BBNs). Posterior probabilities of latent nodes were used as inputs to a predictive model in real-time as evidence was accumulated in the BBN.

The methodology was applied to data streams from a video game and from a Damage Control Simulator which were used to predict and quantify performance. The proposed methods provide cognitive scientists with new tools to analyze subjects in learning environments.
ContributorsLujan Moreno, Gustavo A. (Author) / Runger, George C. (Thesis advisor) / Atkinson, Robert K (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Villalobos, Rene (Committee member) / Arizona State University (Publisher)
Created2017