Matching Items (3)
Filtering by

Clear all filters

153305-Thumbnail Image.png
Description
This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and

This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA.

The main effects of shader fidelity and polygon fidelity were both non- significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.
ContributorsHorton, Scott (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2014
157228-Thumbnail Image.png
Description
The purpose of this action research was to understand how reflective, job-embedded early childhood science professional learning and development (PLD) impacted Early Head Start (EHS) teacher learning and their perceptions toward science with toddlers. Limited content knowledge and lack of formal preparation impact teachers’ understanding of developmentally appropriate science and

The purpose of this action research was to understand how reflective, job-embedded early childhood science professional learning and development (PLD) impacted Early Head Start (EHS) teacher learning and their perceptions toward science with toddlers. Limited content knowledge and lack of formal preparation impact teachers’ understanding of developmentally appropriate science and their capacity to support children to develop science skills. In Arizona, limited availability of early childhood science coursework and no science-related PLD for toddler teachers showed the need for this project. Four literature themes were reviewed: teacher as researcher, how people learn, reflective PLD, and how young children develop scientific thinking skills.

The participants were nine EHS teachers who worked at the same Head Start program in five different classrooms in Arizona. The innovation included early childhood science workshops, collaboration and reflecting meetings (CPRM), and electronic correspondence. These were job-embedded, meaning they related to the teachers’ day-to-day work with toddlers. Qualitative data were collected through CPRM transcripts, pre/post-project interviews, and researcher journal entries. Data were analyzed using constant comparative method and grounded theory through open, focused, and selective coding.

Results showed that teachers learned about their pedagogy and the capacities of toddlers in their classrooms. Through reflective PLD meetings, teachers developed an understanding of toddlers’ abilities to engage with science. Teachers acquired and implemented teacher research skills and utilized the study of documentation to better understand children’s interests and abilities. They recognized the role of the teacher to provide open-ended materials and time. Moreover, teachers improved their comfort with science and enhanced their observational skills. The teachers then saw their role in supporting science as more active. The researcher concluded that the project helped address the problem of practice. Future research should consider job-embedded PLD as an important approach to supporting data-driven instructional practices and reflection about children’s capabilities and competencies.

Keywords: action research, Arizona Early Childhood Workforce Knowledge and Competencies, Arizona’s Infant and Toddler Developmental Guidelines (ITDG), documentation, early childhood science, Early Head Start (EHS), Head Start Early Learning Outcomes Framework (ELOF), inquiry, job-embedded, pedagogy, professional development (PD), reflective professional development, teacher as researcher, teacher research, toddler science
ContributorsBucher, Eric Zachary (Author) / Marsh, Josephine (Thesis advisor) / Martin, Laura (Committee member) / Watanabe Kganetso, Lynne (Committee member) / Arizona State University (Publisher)
Created2019
149609-Thumbnail Image.png
Description
This study examines the effect of the translation of traditional scientific vocabulary into plain English, a process referred to as Anglicization, on student learning in the context of introductory microbiology instruction. Data from Anglicized and Classical-vocabulary lab sections were collected. Data included exam scores as well as pre and post-course

This study examines the effect of the translation of traditional scientific vocabulary into plain English, a process referred to as Anglicization, on student learning in the context of introductory microbiology instruction. Data from Anglicized and Classical-vocabulary lab sections were collected. Data included exam scores as well as pre and post-course surveys on reasoning skills, impressions of biology, science and the course, and microbiology knowledge. Students subjected to Anglicized instruction performed significantly better on exams that assessed their abilities to apply and analyze knowledge from the course, and gained similar amounts of knowledge during the course when compared to peers instructed with standard vocabulary. Their performance in upper-level courses was also better than that of their traditionally educated peers. Hypotheses related to the effect are presented and evaluated; implications for instruction are discussed.
ContributorsRichter, Emily (Author) / Lawson, Anton (Thesis advisor) / Stout, Valerie (Committee member) / Haydel, Shelley (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2011