Matching Items (4)
Filtering by

Clear all filters

133303-Thumbnail Image.png
Description
Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the

Heterogeneous tissues are composed of chemical and physical gradients responsible for transferring load from one tissue type to another, through the thickness or the length of the tissue. Musculoskeletal tissues include these junctions, such as the tendon-bone and ligament-bone, which consist of an alignment gradient through the length of the interfacial regions. These junctions are imperative for transferring mechanical loadings between dissimilar tissues. Engineering a proper scaffold that mimics the native architecture of these tissues to prompt proper repair after an interfacial injury has been difficult to fabricate within tissue engineering. Electrospinning is a common technique for fabricating nanofibrous scaffolds that can mimic the structure of the native extracellular matrix (ECM). However, current electrospinning techniques do not easily allow for the replication of the chemical and physical gradients present in musculoskeletal interfacial tissues. In this work, a novel magnetic electrospinning technique was developed to fabricate polycaprolactone (PCL) nanofibrous scaffolds that recapitulate the gradient alignment structure of the tendon-bone junction. When exposed to the natural magnetic field from a permanent magnet, PCL fibers innately aligned near the magnet with unalignment at distances further away from the magnetic field.
ContributorsGualtieri, Alessandra Villa (Author) / Holloway, Julianne (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168488-Thumbnail Image.png
Description
Tissues within the body enable proper function throughout an individual’s life. After severe injury or disease, many tissues do not fully heal without surgical intervention. The current surgical procedures aimed to repair tissues are not sufficient to fully restore functionality. To address these challenges, current research is seeking new tissue

Tissues within the body enable proper function throughout an individual’s life. After severe injury or disease, many tissues do not fully heal without surgical intervention. The current surgical procedures aimed to repair tissues are not sufficient to fully restore functionality. To address these challenges, current research is seeking new tissue engineering approaches to promote tissue regeneration and functional recovery. Of particular interest, biomaterial scaffolds are designed to induce tissue regeneration by mimicking the biophysical and biochemical aspects of native tissue. While many scaffolds have been designed with homogenous properties, many tissues are heterogenous in nature. Thus, fabricating scaffolds that mimic these complex tissue properties is critical for inducing proper healing after injury. Within this dissertation, scaffolds were designed and fabricated to mimic the heterogenous properties of the following tissues: (1) the vocal fold, which is a complex 3D structure with spatially controlled mechanical properties; and (2) musculoskeletal tissue interfaces, which are fibrous tissues with highly organized gradients in structure and chemistry. A tri-layered hydrogel scaffold was fabricated through layer-by-layer stacking to mimic the mechanical structure of the vocal fold. Furthermore, magnetically-assisted electrospinning and thiol-norbornene photochemistry was used to fabricate fibrous scaffolds that mimic the structural and chemical organization of musculoskeletal interfacial tissues. The work presented in this dissertation further advances the tissue engineering field by using innovative techniques to design scaffolds that recapitulate the natural complexity of native tissues.
ContributorsTindell, Raymond Kevin (Author) / Holloway, Julianne (Thesis advisor) / Green, Matthew (Committee member) / Pizziconi, Vincent (Committee member) / Stephanopoulos, Nicholas (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2021
131471-Thumbnail Image.png
Description
Musculoskeletal heterogenous tissues are crucial for dissipating mechanical load during physical activity. Modern procedures to repair these tissues have proven inadequate to restore full functionality, thus there is a need for alternative reconstructive methods. Consequently, tissue engineered scaffolds can mimic the native structure of tissues and trigger a healing response.

Musculoskeletal heterogenous tissues are crucial for dissipating mechanical load during physical activity. Modern procedures to repair these tissues have proven inadequate to restore full functionality, thus there is a need for alternative reconstructive methods. Consequently, tissue engineered scaffolds can mimic the native structure of tissues and trigger a healing response. Heterogenous tissues like the tendon-bone junction consist of an interdigitated fiber alignment gradient from the tendon to the bone. It has been shown that electrospun fiber alignment gradients can be fabricated from the incorporation of magnetic fields. In this study, manipulating electrostatic and magnetic interactions from various electrospinning collector arrangements were investigated for creating an interdigitated fiber alignment gradient. The collector arrangement consisting of a magnet overlaid with razor cut aluminum foil proved to provide increased control over the interfacial shape. The rapid transition at the interfacial region was verified with brightfield microscopy revealing an interdigitated gradient from highly aligned fibers to unaligned fibers.
ContributorsBusselle, Lincoln Pierce (Author) / Holloway, Julianne (Thesis director) / Tindell, Raymond (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132721-Thumbnail Image.png
Description
Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control

Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control over biomolecule binding through a photopolymerization process. With this, biomimetic gradients can be produced to model a variety of tissue interfaces. To produce these patterns, a gradient mechanism was developed to function in tandem with a syringe pump. A conversion equation was derived to calculate a panel speed from the volumetric flow rate setting on the pump. Seven speeds were used to produce fluorophore gradients on the surface of NorHA hydrogels to assess changes in the length and slope of the gradient. The results indicated a strong positive linear correlation between the speed of the panel and the length of the gradient as well as a strong negative correlation between the speed of the panel and the slope of the gradient. Additionally, the mechanism was able to successfully produce several other types of gradients including multiregional, dual, and triregional.
ContributorsSogge, Amber (Author) / Holloway, Julianne (Thesis director) / Stabenfeldt, Sarah (Committee member) / Fumasi, Fallon (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05