Matching Items (10)
Filtering by

Clear all filters

136262-Thumbnail Image.png
Description
The Larynx plays a pivotal role in our ability to breathe and to speak. It is in our best interest to continue improving the status of tissue regeneration concerning the larynx so that patient voice quality of life can be less hindered in the face of laryngeal cancers and diseases.

The Larynx plays a pivotal role in our ability to breathe and to speak. It is in our best interest to continue improving the status of tissue regeneration concerning the larynx so that patient voice quality of life can be less hindered in the face of laryngeal cancers and diseases. Modern technology can allow us to use CT scans for both diagnosis and treatment. This medical imaging can be converted into three-dimensional patient specific models that are actualized through 3D printing. These implants improve upon the current state of the art because they can be produced in a timely manner, are developed with materials and methods ensuring their biocompatibility, and follow architectures and geometries best suited for the patient to improve their voice quality of life. Additionally they should be able to allow patient speech in the case of partial laryngectomies where the arytenoid has been removed by acting as a permanent vocal fold This treatment process for laryngectomies aligns itself with personalized medicine by targeting its geometry based on that of the patient. Technologies and manufacturing processes utilized to produce them are accessible and could all be used within the clinical space. The life-saving implant required for the laryngectomy healing and recovery process can be ready to implant for the patient within a few days of imaging them.
ContributorsBarry, Colin Patrick (Author) / Pizziconi, Vincent (Thesis director) / Lott, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
133601-Thumbnail Image.png
Description
Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.
ContributorsMieth, Justin Richard (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134938-Thumbnail Image.png
Description
Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.
ContributorsQuezada Valladares, Maria Jose (Author) / Honeycutt, Claire (Thesis director) / Santello, Marco (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134804-Thumbnail Image.png
Description
Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.
ContributorsOssanna, Meilin Ryan (Author) / Honeycutt, Claire (Thesis director) / Schaefer, Sydney (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

Pelvic organ prolapse (POP) is a condition involving the weakening of the pelvic floor, with a prevalence of up to 50% of women experiencing the condition to some degree. Individuals with the condition are susceptible to multiple symptoms include vaginal protrusion, dyspareunia, and difficulties with waste excretion. Risk factors are

Pelvic organ prolapse (POP) is a condition involving the weakening of the pelvic floor, with a prevalence of up to 50% of women experiencing the condition to some degree. Individuals with the condition are susceptible to multiple symptoms include vaginal protrusion, dyspareunia, and difficulties with waste excretion. Risk factors are common and numerous for POP, and the economic burden of the condition poses a significant cost to nations worldwide. For many years, the primary solution to POP was the usage of transvaginal meshes, often composed of polypropylene, but rising reports of harmful side effects have led to their recall. Due to this, the space is open for novel solutions, and treatments based in regenerative medicine are on the rise. One such potential treatment is the usage of functionalized polyvinyl alcohol scaffolds to support the regeneration and strengthening of the pelvic floor. To validate the usage of this scaffold, this study focuses on the biocompatibility of the scaffolds, with specific focus on the maintenance of cell viability and proliferation on the scaffold. Through usage of metabolic assays and fluorescence microscopy, scaffolds composed of functional polyvinyl alcohol with cellulose have shown promise in supporting the cell types necessary for reconstructing the pelvic floor.

ContributorsHaug, Joel (Author) / Song, Kenan (Thesis director) / Lancaster, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description
Pelvic organ prolapse (POP) is a condition involving the weakening of the pelvic floor, with a prevalence of up to 50% of women experiencing the condition to some degree. Individuals with the condition are susceptible to multiple symptoms include vaginal protrusion, dyspareunia, and difficulties with waste excretion. Risk factors are

Pelvic organ prolapse (POP) is a condition involving the weakening of the pelvic floor, with a prevalence of up to 50% of women experiencing the condition to some degree. Individuals with the condition are susceptible to multiple symptoms include vaginal protrusion, dyspareunia, and difficulties with waste excretion. Risk factors are common and numerous for POP, and the economic burden of the condition poses a significant cost to nations worldwide. For many years, the primary solution to POP was the usage of transvaginal meshes, often composed of polypropylene, but rising reports of harmful side effects have led to their recall. Due to this, the space is open for novel solutions, and treatments based in regenerative medicine are on the rise. One such potential treatment is the usage of functionalized polyvinyl alcohol scaffolds to support the regeneration and strengthening of the pelvic floor. To validate the usage of this scaffold, this study focuses on the biocompatibility of the scaffolds, with specific focus on the maintenance of cell viability and proliferation on the scaffold. Through usage of metabolic assays and fluorescence microscopy, scaffolds composed of functional polyvinyl alcohol with cellulose have shown promise in supporting the cell types necessary for reconstructing the pelvic floor.
ContributorsHaug, Joel (Author) / Song, Kenan (Thesis director) / Lancaster, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description
Pelvic organ prolapse (POP) is a condition involving the weakening of the pelvic floor, with a prevalence of up to 50% of women experiencing the condition to some degree. Individuals with the condition are susceptible to multiple symptoms include vaginal protrusion, dyspareunia, and difficulties with waste excretion. Risk factors are

Pelvic organ prolapse (POP) is a condition involving the weakening of the pelvic floor, with a prevalence of up to 50% of women experiencing the condition to some degree. Individuals with the condition are susceptible to multiple symptoms include vaginal protrusion, dyspareunia, and difficulties with waste excretion. Risk factors are common and numerous for POP, and the economic burden of the condition poses a significant cost to nations worldwide. For many years, the primary solution to POP was the usage of transvaginal meshes, often composed of polypropylene, but rising reports of harmful side effects have led to their recall. Due to this, the space is open for novel solutions, and treatments based in regenerative medicine are on the rise. One such potential treatment is the usage of functionalized polyvinyl alcohol scaffolds to support the regeneration and strengthening of the pelvic floor. To validate the usage of this scaffold, this study focuses on the biocompatibility of the scaffolds, with specific focus on the maintenance of cell viability and proliferation on the scaffold. Through usage of metabolic assays and fluorescence microscopy, scaffolds composed of functional polyvinyl alcohol with cellulose have shown promise in supporting the cell types necessary for reconstructing the pelvic floor.
ContributorsHaug, Joel (Author) / Song, Kenan (Thesis director) / Lancaster, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

Lab-grown food products of animal cell origin, now becoming popularly coined as, ‘Cellular Agriculture’ is a revolutionary breakthrough technology that has the potential to penetrate the lives of every American or citizen of the world. It is important to recognize that the impetus for developing this technology is fueled by

Lab-grown food products of animal cell origin, now becoming popularly coined as, ‘Cellular Agriculture’ is a revolutionary breakthrough technology that has the potential to penetrate the lives of every American or citizen of the world. It is important to recognize that the impetus for developing this technology is fueled by environmental concerns with climate change, rising geopolitical instability, and population growth projections, where farm-grown food has now become a growing national security issue. Notwithstanding its potential, in addition to the necessary technological innovation and economic scalability, the market success of cellular agriculture will depend greatly on regulatory oversight by multiple government agencies without which it can cause undue harm to individuals, populations, and the environment. Thus, it is critical for those appropriate United States governing bodies to ensure that the technology being developed is both safe and of an acceptable quality for human consumption and has no adverse environmental impact. As such, animal foods, derived from farms, previously regulated almost exclusively by the United States Department of Agriculture (USDA) are now being regulated under a joint formal agreement between the US Food and Drug Administration (US FDA) and the USDA if derived from the lab, i.e., lab-grown animal foods. The main reason for joint oversight between the FDA and the USDA is that the FDA has developed the in-house expertise to oversee primary cell harvesting and cell storage, as well as, cell growth and differentiation for the development of 3D-engineered tissues intended for tissue and organ replacement for the emerging field of regenerative medicine. As such, the FDA has been given the authority to oversee the ‘front end’ of lab-grown food processes which relies on the very same processes utilized in engineered human tissues to produce food-grade engineered tissues. Oversight then transitions to the USDA-FSIS (Food Safety and Inspection Service) during the harvesting stage of the cell culture process. The USDA-FSIS then oversees the further production and labeling of these products. Included in the agreement is the understanding that both bodies are responsible for communicating necessary information to each other and collaboratively developing new regulatory actions as needed. However, there currently lacks clarity on some topics regarding certain legal, ethical, and scientific issues. Lab-grown meat products require more extensive regulation than farm-grown animal food products to ensure that they are safe and nutritious for consumption. To do this, CFSAN can create new classes of lab-grown foods, such as ‘lab-grown USDA foods,’ ‘lab-grown non-USDA foods,’ ‘lab-grown extinct foods,’ ‘lab-grown human food tissues,’ and ‘medically activated lab-grown foods.’

ContributorsBanen, Samuel (Author) / Pizziconi, Vincent (Thesis director) / Feigal, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
132721-Thumbnail Image.png
Description
Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control

Tissue engineering is an emerging field focused on the repair, replacement, and regeneration of damaged tissue. Engineered tissue consists of three factors: cells, biomolecular signals, and a scaffold. Cell-free scaffolds present a unique opportunity to develop highly specific microenvironments with tunable properties. Norbornene-functionalized hyaluronic acid (NorHA) hydrogels provide spatial control over biomolecule binding through a photopolymerization process. With this, biomimetic gradients can be produced to model a variety of tissue interfaces. To produce these patterns, a gradient mechanism was developed to function in tandem with a syringe pump. A conversion equation was derived to calculate a panel speed from the volumetric flow rate setting on the pump. Seven speeds were used to produce fluorophore gradients on the surface of NorHA hydrogels to assess changes in the length and slope of the gradient. The results indicated a strong positive linear correlation between the speed of the panel and the length of the gradient as well as a strong negative correlation between the speed of the panel and the slope of the gradient. Additionally, the mechanism was able to successfully produce several other types of gradients including multiregional, dual, and triregional.
ContributorsSogge, Amber (Author) / Holloway, Julianne (Thesis director) / Stabenfeldt, Sarah (Committee member) / Fumasi, Fallon (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
164710-Thumbnail Image.png
Description

Regenerative medicine utilizes living cells as therapeutics to replace or repair damaged or diseased tissue, but the manufacturing processes to produce cell-based tissue products require customized biounit operations that do not currently exist as conventional biochemical and biopharma manufacturing processes. Living cells are constantly changing and reacting to their environment,

Regenerative medicine utilizes living cells as therapeutics to replace or repair damaged or diseased tissue, but the manufacturing processes to produce cell-based tissue products require customized biounit operations that do not currently exist as conventional biochemical and biopharma manufacturing processes. Living cells are constantly changing and reacting to their environment, which in the case of cells isolated from their hosts, are utilized as living bioreactor components that, by themselves, are manipulated to biomanufacturer selected tissue products. Therefore, specialized technology is required to assure that cellular products produce the phenotypical tissue characteristics that the final product is designated to have, while also maintaining sterility of the culture. Because of this, FDA guidelines encourage the use of Process Analytical Technology (PAT – see Ref ) to be integrated into manufacturing systems of biologics to ensure quality and safety. To address the need for evaluation of sensor technologies for potential use in PAT, a literature review of both existing sensing technologies and biomarkers was conducted. After a thorough assessment of the sensor technologies that were most applicable to biomanufacturing, spectrophotometry was selected to monitor the metabolic components glucose and lactate of living cells in culture in real time. Initially, spectrophotometric measurements were taken of mock solutions of glucose and lactate solutions at concentrations relevant to human cell culture and physiology. With that data, a mathematical model was developed to predict a solution’s glucose and lactate concentration. This model was then integrated into a Matlab program that was used to continuously monitor and estimate solutions of glucose and lactate concentrations in real time. After testing the accuracy of this program in different solutions, it was determined that calibration curves and models must be made for each media type and estimates of glucose and lactate were found accurate only at higher concentrations. This program was successfully utilized to monitor in real time glucose and lactate production and consumption trends of Mesenchymal Stem Cells (MSCs) in culture, demonstrating proof-of-concept of the proposed bioprocess monitoring schema.

ContributorsBerger, Aubrey (Author) / Pizziconi, Vincent (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05