Filtering by
- All Subjects: deep learning
- Creators: Computer Science and Engineering Program
- Member of: Barrett, The Honors College Thesis/Creative Project Collection
- Resource Type: Text
This thesis attempts to explain Everettian quantum mechanics from the ground up, such that those with little to no experience in quantum physics can understand it. First, we introduce the history of quantum theory, and some concepts that make up the framework of quantum physics. Through these concepts, we reveal why interpretations are necessary to map the quantum world onto our classical world. We then introduce the Copenhagen interpretation, and how many-worlds differs from it. From there, we dive into the concepts of entanglement and decoherence, explaining how worlds branch in an Everettian universe, and how an Everettian universe can appear as our classical observed world. From there, we attempt to answer common questions about many-worlds and discuss whether there are philosophical ramifications to believing such a theory. Finally, we look at whether the many-worlds interpretation can be proven, and why one might choose to believe it.
algorithms for recommending new music to users. However, at the
core of their recommendations is the collaborative filtering algorithm,
which recommends music based on what other people with similar
tastes have listened to [1]. While this can produce highly relevant
content recommendations, it tends to promote only popular content
[2]. The popularity bias inherent in collaborative-filtering based
systems can overlook music that fits a user’s taste, simply because
nobody else is listening to it. One possible solution to this problem is
to recommend music based on features of the music itself, and
recommend songs which have similar features. Here, a method for
extracting high-level features representing the mood of a song is
presented, with the aim of tailoring music recommendations to an
individual's mood, and providing music recommendations with
diversity in popularity.
This thesis is part of a collaboration between ASU’s Interactive Robotics Laboratory and NASA’s Jet Propulsion Laboratory. In this thesis, the training pipeline from Sharma’s paper “Pose Estimation for Non-Cooperative Spacecraft Rendezvous Using Convolutional Neural Networks” was modified to perform pose estimation on a complex object - specifically, a segment of a hollow truss. After initial attempts to replicate the architecture used in the paper and train solely on synthetic images, a combination of synthetic dataset generation and transfer learning on an ImageNet-pretrained AlexNet model was implemented to mitigate the difficulty of gathering large amounts of real-world data. Experimentation with pose estimation accuracy and hyperparameters of the model resulted in gradual test accuracy improvement, and future work is suggested to improve pose estimation for complex objects with some form of rotational symmetry.
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
AI and deep learning workloads are different from the conventional cloud and mobile workloads, with respect to: (1) Computational Intensity, (2) I/O characteristics, and (3) communication pattern. While there is a considerable amount of research activity on the theoretical aspects of AI and Deep Learning algorithms that run with greater efficiency, there are only a few studies on the infrastructural impact of Deep Learning workloads on computing and storage resources in distributed systems.
It is typical to utilize a heterogeneous mixture of CPU and GPU devices to perform training on a neural network. Google Brain has a developed a reinforcement model that can place training operations across a heterogeneous cluster. Though it has only been tested with local devices in a single cluster. This study will explore the method’s capabilities and attempt to apply this method on a cluster with nodes across a network.