Matching Items (5)

Filtering by

Clear all filters

136785-Thumbnail Image.png

Exploring the Design of Vibrotactile Cues for Visio-Haptic Sensory Substitution

Description

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions.

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.

Contributors

Agent

Created

Date Created
2014-05

135660-Thumbnail Image.png

Convolutional Neural Networks for Facial Expression Recognition

Description

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.

Contributors

Agent

Created

Date Created
2016-05

131212-Thumbnail Image.png

Facial Expression Recognition Using Machine Learning

Description

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models with different algorithms to determine if potential systems would prove to be successful. Even today, there are still many research initiatives that are continuing to develop new models in the hopes to discover potential solutions for problems such as autonomous driving or determining the emotional value from a single sentence. One of the current popular research topics for Machine Learning is the development of Facial Expression Recognition systems. These Machine Learning models focus on classifying images of human faces that are expressing different emotions through facial expressions. In order to develop effective models to perform Facial Expression Recognition, researchers have gone on to utilize Deep Learning models, which are a more advanced implementation of Machine Learning models, known as Neural Networks. More specifically, the use of Convolutional Neural Networks has proven to be the most effective models for achieving highly accurate results at classifying images of various facial expressions. Convolutional Neural Networks are Deep Learning models that are capable of processing visual data, such as images and videos, and can be used to identify various facial expressions. The purpose of this project, I focused on learning about the important concepts of Machine Learning, Deep Learning, and Convolutional Neural Networks to implement a Convolutional Neural Network that was previously developed by a recommended research paper.

Contributors

Created

Date Created
2020-05

158127-Thumbnail Image.png

Accessible Retail Shopping For The Visually Impaired Using Deep Learning

Description

Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making

Over the past decade, advancements in neural networks have been instrumental in achieving remarkable breakthroughs in the field of computer vision. One of the applications is in creating assistive technology to improve the lives of visually impaired people by making the world around them more accessible. A lot of research in convolutional neural networks has led to human-level performance in different vision tasks including image classification, object detection, instance segmentation, semantic segmentation, panoptic segmentation and scene text recognition. All the before mentioned tasks, individually or in combination, have been used to create assistive technologies to improve accessibility for the blind.

This dissertation outlines various applications to improve accessibility and independence for visually impaired people during shopping by helping them identify products in retail stores. The dissertation includes the following contributions; (i) A dataset containing images of breakfast-cereal products and a classifier using a deep neural (ResNet) network; (ii) A dataset for training a text detection and scene-text recognition model; (iii) A model for text detection and scene-text recognition to identify product images using a user-controlled camera; (iv) A dataset of twenty thousand products with product information and related images that can be used to train and test a system designed to identify products.

Contributors

Agent

Created

Date Created
2020

158278-Thumbnail Image.png

Generalized Domain Adaptation for Visual Domains

Description

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of

Humans have a great ability to recognize objects in different environments irrespective of their variations. However, the same does not apply to machine learning models which are unable to generalize to images of objects from different domains. The generalization of these models to new data is constrained by the domain gap. Many factors such as image background, image resolution, color, camera perspective and variations in the objects are responsible for the domain gap between the training data (source domain) and testing data (target domain). Domain adaptation algorithms aim to overcome the domain gap between the source and target domains and learn robust models that can perform well across both the domains.

This thesis provides solutions for the standard problem of unsupervised domain adaptation (UDA) and the more generic problem of generalized domain adaptation (GDA). The contributions of this thesis are as follows. (1) Certain and Consistent Domain Adaptation model for closed-set unsupervised domain adaptation by aligning the features of the source and target domain using deep neural networks. (2) A multi-adversarial deep learning model for generalized domain adaptation. (3) A gating model that detects out-of-distribution samples for generalized domain adaptation.

The models were tested across multiple computer vision datasets for domain adaptation.

The dissertation concludes with a discussion on the proposed approaches and future directions for research in closed set and generalized domain adaptation.

Contributors

Agent

Created

Date Created
2020