Matching Items (13)
Filtering by

Clear all filters

153065-Thumbnail Image.png
Description
Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data

Data imbalance and data noise often coexist in real world datasets. Data imbalance affects the learning classifier by degrading the recognition power of the classifier on the minority class, while data noise affects the learning classifier by providing inaccurate information and thus misleads the classifier. Because of these differences, data imbalance and data noise have been treated separately in the data mining field. Yet, such approach ignores the mutual effects and as a result may lead to new problems. A desirable solution is to tackle these two issues jointly. Noting the complementary nature of generative and discriminative models, this research proposes a unified model fusion based framework to handle the imbalanced classification with noisy dataset.

The phase I study focuses on the imbalanced classification problem. A generative classifier, Gaussian Mixture Model (GMM) is studied which can learn the distribution of the imbalance data to improve the discrimination power on imbalanced classes. By fusing this knowledge into cost SVM (cSVM), a CSG method is proposed. Experimental results show the effectiveness of CSG in dealing with imbalanced classification problems.

The phase II study expands the research scope to include the noisy dataset into the imbalanced classification problem. A model fusion based framework, K Nearest Gaussian (KNG) is proposed. KNG employs a generative modeling method, GMM, to model the training data as Gaussian mixtures and form adjustable confidence regions which are less sensitive to data imbalance and noise. Motivated by the K-nearest neighbor algorithm, the neighboring Gaussians are used to classify the testing instances. Experimental results show KNG method greatly outperforms traditional classification methods in dealing with imbalanced classification problems with noisy dataset.

The phase III study addresses the issues of feature selection and parameter tuning of KNG algorithm. To further improve the performance of KNG algorithm, a Particle Swarm Optimization based method (PSO-KNG) is proposed. PSO-KNG formulates model parameters and data features into the same particle vector and thus can search the best feature and parameter combination jointly. The experimental results show that PSO can greatly improve the performance of KNG with better accuracy and much lower computational cost.
ContributorsHe, Miao (Author) / Wu, Teresa (Thesis advisor) / Li, Jing (Committee member) / Silva, Alvin (Committee member) / Borror, Connie (Committee member) / Arizona State University (Publisher)
Created2014
156299-Thumbnail Image.png
Description
In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking

In healthcare facilities, health information systems (HISs) are used to serve different purposes. The radiology department adopts multiple HISs in managing their operations and patient care. In general, the HISs that touch radiology fall into two categories: tracking HISs and archive HISs. Electronic Health Records (EHR) is a typical tracking HIS, which tracks the care each patient receives at multiple encounters and facilities. Archive HISs are typically specialized databases to store large-size data collected as part of the patient care. A typical example of an archive HIS is the Picture Archive and Communication System (PACS), which provides economical storage and convenient access to diagnostic images from multiple modalities. How to integrate such HISs and best utilize their data remains a challenging problem due to the disparity of HISs as well as high-dimensionality and heterogeneity of the data. My PhD dissertation research includes three inter-connected and integrated topics and focuses on designing integrated HISs and further developing statistical models and machine learning algorithms for process and patient care improvement.

Topic 1: Design of super-HIS and tracking of quality of care (QoC). My research developed an information technology that integrates multiple HISs in radiology, and proposed QoC metrics defined upon the data that measure various dimensions of care. The DDD assisted the clinical practices and enabled an effective intervention for reducing lengthy radiologist turnaround times for patients.

Topic 2: Monitoring and change detection of QoC data streams for process improvement. With the super-HIS in place, high-dimensional data streams of QoC metrics are generated. I developed a statistical model for monitoring high- dimensional data streams that integrated Singular Vector Decomposition (SVD) and process control. The algorithm was applied to QoC metrics data, and additionally extended to another application of monitoring traffic data in communication networks.

Topic 3: Deep transfer learning of archive HIS data for computer-aided diagnosis (CAD). The novelty of the CAD system is the development of a deep transfer learning algorithm that combines the ideas of transfer learning and multi- modality image integration under the deep learning framework. Our system achieved high accuracy in breast cancer diagnosis compared with conventional machine learning algorithms.
ContributorsWang, Kun (Author) / Li, Jing (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Zwart, Christine M. (Committee member) / Arizona State University (Publisher)
Created2018
137487-Thumbnail Image.png
Description
The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation

The current Enterprise Requirements and Acquisition Model (ERAM), a discrete event simulation of the major tasks and decisions within the DoD acquisition system, identifies several what-if intervention strategies to improve program completion time. However, processes that contribute to the program acquisition completion time were not explicitly identified in the simulation study. This research seeks to determine the acquisition processes that contribute significantly to total simulated program time in the acquisition system for all programs reaching Milestone C. Specifically, this research examines the effect of increased scope management, technology maturity, and decreased variation and mean process times in post-Design Readiness Review contractor activities by performing additional simulation analyses. Potential policies are formulated from the results to further improve program acquisition completion time.
ContributorsWorger, Danielle Marie (Author) / Wu, Teresa (Thesis director) / Shunk, Dan (Committee member) / Wirthlin, J. Robert (Committee member) / Industrial, Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2013-05
155128-Thumbnail Image.png
Description
This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary

This dissertation carries out an inter-disciplinary research of operations research, statistics, power system engineering, and economics. Specifically, this dissertation focuses on a special power system scheduling problem, a unit commitment problem with uncertainty. This scheduling problem is a two-stage decision problem. In the first stage, system operator determines the binary commitment status (on or off) of generators in advance. In the second stage, after the realization of uncertainty, the system operator determines generation levels of the generators. The goal of this dissertation is to develop computationally-tractable methodologies and algorithms to solve large-scale unit commitment problems with uncertainty.

In the first part of this dissertation, two-stage models are studied to solve the problem. Two solution methods are studied and improved: stochastic programming and robust optimization. A scenario-based progressive hedging decomposition algorithm is applied. Several new hedging mechanisms and parameter selections rules are proposed and tested. A data-driven uncertainty set is proposed to improve the performance of robust optimization.

In the second part of this dissertation, a framework to reduce the two-stage stochastic program to a single-stage deterministic formulation is proposed. Most computation of the proposed approach can be done by offline studies. With the assistance of offline analysis, simulation, and data mining, the unit commitment problems with uncertainty can be solved efficiently.

Finally, the impacts of uncertainty on energy market prices are studied. A new component of locational marginal price, a marginal security component, which is the weighted shadow prices of the proposed security constraints, is proposed to better represent energy prices.
ContributorsLi, Chao (Author) / Hedman, Kory W (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Mirchandani, Pitu B. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2016
149478-Thumbnail Image.png
Description
Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model

Optimization of surgical operations is a challenging managerial problem for surgical suite directors. This dissertation presents modeling and solution techniques for operating room (OR) planning and scheduling problems. First, several sequencing and patient appointment time setting heuristics are proposed for scheduling an Outpatient Procedure Center. A discrete event simulation model is used to evaluate how scheduling heuristics perform with respect to the competing criteria of expected patient waiting time and expected surgical suite overtime for a single day compared to current practice. Next, a bi-criteria Genetic Algorithm is used to determine if better solutions can be obtained for this single day scheduling problem. The efficacy of the bi-criteria Genetic Algorithm, when surgeries are allowed to be moved to other days, is investigated. Numerical experiments based on real data from a large health care provider are presented. The analysis provides insight into the best scheduling heuristics, and the tradeoff between patient and health care provider based criteria. Second, a multi-stage stochastic mixed integer programming formulation for the allocation of surgeries to ORs over a finite planning horizon is studied. The demand for surgery and surgical duration are random variables. The objective is to minimize two competing criteria: expected surgery cancellations and OR overtime. A decomposition method, Progressive Hedging, is implemented to find near optimal surgery plans. Finally, properties of the model are discussed and methods are proposed to improve the performance of the algorithm based on the special structure of the model. It is found simple rules can improve schedules used in practice. Sequencing surgeries from the longest to shortest mean duration causes high expected overtime, and should be avoided, while sequencing from the shortest to longest mean duration performed quite well in our experiments. Expending greater computational effort with more sophisticated optimization methods does not lead to substantial improvements. However, controlling daily procedure mix may achieve substantial improvements in performance. A novel stochastic programming model for a dynamic surgery planning problem is proposed in the dissertation. The efficacy of the progressive hedging algorithm is investigated. It is found there is a significant correlation between the performance of the algorithm and type and number of scenario bundles in a problem instance. The computational time spent to solve scenario subproblems is among the most significant factors that impact the performance of the algorithm. The quality of the solutions can be improved by detecting and preventing cyclical behaviors.
ContributorsGul, Serhat (Author) / Fowler, John W. (Thesis advisor) / Denton, Brian T. (Thesis advisor) / Wu, Teresa (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2010
149481-Thumbnail Image.png
Description
Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task

Surgery is one of the most important functions in a hospital with respect to operational cost, patient flow, and resource utilization. Planning and scheduling the Operating Room (OR) is important for hospitals to improve efficiency and achieve high quality of service. At the same time, it is a complex task due to the conflicting objectives and the uncertain nature of surgeries. In this dissertation, three different methodologies are developed to address OR planning and scheduling problem. First, a simulation-based framework is constructed to analyze the factors that affect the utilization of a catheterization lab and provide decision support for improving the efficiency of operations in a hospital with different priorities of patients. Both operational costs and patient satisfaction metrics are considered. Detailed parametric analysis is performed to provide generic recommendations. Overall it is found the 75th percentile of process duration is always on the efficient frontier and is a good compromise of both objectives. Next, the general OR planning and scheduling problem is formulated with a mixed integer program. The objectives include reducing staff overtime, OR idle time and patient waiting time, as well as satisfying surgeon preferences and regulating patient flow from OR to the Post Anesthesia Care Unit (PACU). Exact solutions are obtained using real data. Heuristics and a random keys genetic algorithm (RKGA) are used in the scheduling phase and compared with the optimal solutions. Interacting effects between planning and scheduling are also investigated. Lastly, a multi-objective simulation optimization approach is developed, which relaxes the deterministic assumption in the second study by integrating an optimization module of a RKGA implementation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) to search for Pareto optimal solutions, and a simulation module to evaluate the performance of a given schedule. It is experimentally shown to be an effective technique for finding Pareto optimal solutions.
ContributorsLi, Qing (Author) / Fowler, John W (Thesis advisor) / Mohan, Srimathy (Thesis advisor) / Gopalakrishnan, Mohan (Committee member) / Askin, Ronald G. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2010
156053-Thumbnail Image.png
Description
Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster

Understanding customer preference is crucial for new product planning and marketing decisions. This thesis explores how historical data can be leveraged to understand and predict customer preference. This thesis presents a decision support framework that provides a holistic view on customer preference by following a two-phase procedure. Phase-1 uses cluster analysis to create product profiles based on which customer profiles are derived. Phase-2 then delves deep into each of the customer profiles and investigates causality behind their preference using Bayesian networks. This thesis illustrates the working of the framework using the case of Intel Corporation, world’s largest semiconductor manufacturing company.
ContributorsRam, Sudarshan Venkat (Author) / Kempf, Karl G. (Thesis advisor) / Wu, Teresa (Thesis advisor) / Ju, Feng (Committee member) / Arizona State University (Publisher)
Created2017
161762-Thumbnail Image.png
Description
Nonalcoholic Steatohepatitis (NASH) is a severe form of Nonalcoholic fatty liverdisease, that is caused due to excessive calorie intake, sedentary lifestyle and in the absence of severe alcohol consumption. It is widely prevalent in the United States and in many other developed countries, affecting up to 25 percent of the population. Due to

Nonalcoholic Steatohepatitis (NASH) is a severe form of Nonalcoholic fatty liverdisease, that is caused due to excessive calorie intake, sedentary lifestyle and in the absence of severe alcohol consumption. It is widely prevalent in the United States and in many other developed countries, affecting up to 25 percent of the population. Due to being asymptotic, it usually goes unnoticed and may lead to liver failure if not treated at the right time. Currently, liver biopsy is the gold standard to diagnose NASH, but being an invasive procedure, it comes with it's own complications along with the inconvenience of sampling repeated measurements over a period of time. Hence, noninvasive procedures to assess NASH are urgently required. Magnetic Resonance Elastography (MRE) based Shear Stiffness and Loss Modulus along with Magnetic Resonance Imaging based proton density fat fraction have been successfully combined to predict NASH stages However, their role in the prediction of disease progression still remains to be investigated. This thesis thus looks into combining features from serial MRE observations to develop statistical models to predict NASH progression. It utilizes data from an experiment conducted on male mice to develop progressive and regressive NASH and trains ordinal models, ordered probit regression and ordinal forest on labels generated from a logistic regression model. The models are assessed on histological data collected at the end point of the experiment. The models developed provide a framework to utilize a non-invasive tool to predict NASH disease progression.
ContributorsDeshpande, Eeshan (Author) / Ju, Feng (Thesis advisor) / Wu, Teresa (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2021
161843-Thumbnail Image.png
Description
In this thesis, the applications of deep learning in the analysis, detection and classification of medical imaging datasets were studied, with a focus on datasets having a limited sample size. A combined machine learning-deep learning model was designed to classify one small dataset, prostate cancer provided by Mayo

In this thesis, the applications of deep learning in the analysis, detection and classification of medical imaging datasets were studied, with a focus on datasets having a limited sample size. A combined machine learning-deep learning model was designed to classify one small dataset, prostate cancer provided by Mayo Clinic, Arizona. Deep learning model was implemented to extract imaging features followed by machine learning classifier for prostate cancer diagnosis. The results were compared against models trained on texture-based features, namely gray level co-occurrence matrix (GLCM) and Gabor. Some of the challenges of performing diagnosis on medical imaging datasets with limited sample sizes, have been identified. Lastly, a set of future works have been proposed. Keywords: Deep learning, radiology, transfer learning, convolutional neural network.
ContributorsSarkar, Suryadipto (Author) / Wu, Teresa (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Silva, Alvin (Committee member) / Arizona State University (Publisher)
Created2021
171944-Thumbnail Image.png
Description
Over the past few decades, medical imaging is becoming important in medicine for disease diagnosis, prognosis, treatment assessment and health monitoring. As medical imaging has progressed, imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. Detecting and segmenting objects from images are often the first steps

Over the past few decades, medical imaging is becoming important in medicine for disease diagnosis, prognosis, treatment assessment and health monitoring. As medical imaging has progressed, imaging biomarkers are being rapidly developed for early diagnosis and staging of disease. Detecting and segmenting objects from images are often the first steps in quantitative measurement of these biomarkers. While large objects can often be automatically or semi-automatically delineated, segmenting small objects (blobs) is challenging. The small object of particular interest in this dissertation are glomeruli from kidney magnetic resonance (MR) images. This problem has its unique challenges. First of all, the size of glomeruli is extremely small and very similar with noises from images. Second, there are massive of glomeruli in kidney, e.g. over 1 million glomeruli in human kidney, and the intensity distribution is heterogenous. A third recognized issue is that a large portion of glomeruli are overlapping and touched in images. The goal of this dissertation is to develop computational algorithms to identify and discover glomeruli related imaging biomarkers. The first phase is to develop a U-net joint with Hessian based Difference of Gaussians (UH-DoG) blob detector. Joining effort from deep learning alleviates the over-detection issue from Hessian analysis. Next, as extension of UH-DoG, a small blob detector using Bi-Threshold Constrained Adaptive Scales (BTCAS) is proposed. Deep learning is treated as prior of Difference of Gaussian (DoG) to improve its efficiency. By adopting BTCAS, under-segmentation issue of deep learning is addressed. The second phase is to develop a denoising convexity-consistent Blob Generative Adversarial Network (BlobGAN). BlobGAN could achieve high denoising performance and selectively denoise the image without affecting the blobs. These detectors are validated on datasets of 2D fluorescent images, 3D synthetic images, 3D MR (18 mice, 3 humans) images and proved to be outperforming the competing detectors. In the last phase, a Fréchet Descriptors Distance based Coreset approach (FDD-Coreset) is proposed for accelerating BlobGAN’s training. Experiments have shown that BlobGAN trained on FDD-Coreset not only significantly reduces the training time, but also achieves higher denoising performance and maintains approximate performance of blob identification compared with training on entire dataset.
ContributorsXu, Yanzhe (Author) / Wu, Teresa (Thesis advisor) / Iquebal, Ashif (Committee member) / Yan, Hao (Committee member) / Beeman, Scott (Committee member) / Arizona State University (Publisher)
Created2022