Matching Items (27)
Filtering by

Clear all filters

135330-Thumbnail Image.png
ContributorsPowell, Devon (Author) / Gardner, Carl (Thesis director) / Scannapieco, Evan (Committee member) / Windhorst, Rogier (Committee member) / Barrett, The Honors College (Contributor)
Created2012-05
135660-Thumbnail Image.png
Description
This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can

This paper presents work that was done to create a system capable of facial expression recognition (FER) using deep convolutional neural networks (CNNs) and test multiple configurations and methods. CNNs are able to extract powerful information about an image using multiple layers of generic feature detectors. The extracted information can be used to understand the image better through recognizing different features present within the image. Deep CNNs, however, require training sets that can be larger than a million pictures in order to fine tune their feature detectors. For the case of facial expression datasets, none of these large datasets are available. Due to this limited availability of data required to train a new CNN, the idea of using naïve domain adaptation is explored. Instead of creating and using a new CNN trained specifically to extract features related to FER, a previously trained CNN originally trained for another computer vision task is used. Work for this research involved creating a system that can run a CNN, can extract feature vectors from the CNN, and can classify these extracted features. Once this system was built, different aspects of the system were tested and tuned. These aspects include the pre-trained CNN that was used, the layer from which features were extracted, normalization used on input images, and training data for the classifier. Once properly tuned, the created system returned results more accurate than previous attempts on facial expression recognition. Based on these positive results, naïve domain adaptation is shown to successfully leverage advantages of deep CNNs for facial expression recognition.
ContributorsEusebio, Jose Miguel Ang (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
With the advent of sophisticated computer technology, we increasingly see the use of computational techniques in the study of problems from a variety of disciplines, including the humanities. In a field such as poetry, where classic works are subject to frequent re-analysis over the course of years, decades, or even

With the advent of sophisticated computer technology, we increasingly see the use of computational techniques in the study of problems from a variety of disciplines, including the humanities. In a field such as poetry, where classic works are subject to frequent re-analysis over the course of years, decades, or even centuries, there is a certain demand for fresh approaches to familiar tasks, and such breaks from convention may even be necessary for the advancement of the field. Existing quantitative studies of poetry have employed computational techniques in their analyses, however, there remains work to be done with regards to the deployment of deep neural networks on large corpora of poetry to classify portions of the works contained therein based on certain features. While applications of neural networks to social media sites, consumer reviews, and other web-originated data are common within computational linguistics and natural language processing, comparatively little work has been done on the computational analysis of poetry using the same techniques. In this work, I begin to lay out the first steps for the study of poetry using neural networks. Using a convolutional neural network to classify author birth date, I was able to not only extract a non-trivial signal from the data, but also identify the presence of clustering within by-author model accuracy. While definitive conclusions about the cause of this clustering were not reached, investigation of this clustering reveals immense heterogeneity in the traits of accurately classified authors. Further study may unpack this clustering and reveal key insights about how temporal information is encoded in poetry. The study of poetry using neural networks remains very open but exhibits potential to be an interesting and deep area of work.
ContributorsGoodloe, Oscar Laurence (Author) / Nishimura, Joel (Thesis director) / Broatch, Jennifer (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
YouTube video bots have been constantly generating bot videos and posting them on the YouTube platform. While these bot-generated videos negatively influence the YouTube audience, they cost YouTube extra resources to host. The goal for this project is to build a classifier that identifies bot-generated channels based on a dee

YouTube video bots have been constantly generating bot videos and posting them on the YouTube platform. While these bot-generated videos negatively influence the YouTube audience, they cost YouTube extra resources to host. The goal for this project is to build a classifier that identifies bot-generated channels based on a deep learning-based framework. We designed the framework to take text, audio, and video features into account. For the purpose of this thesis project, we will be focusing on text classification work.
ContributorsSai, Lun (Author) / Benjamin, Victor (Thesis director) / Lin, Elva S.Y. (Committee member) / Department of Information Systems (Contributor, Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132967-Thumbnail Image.png
Description
Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that,

Classical planning is a field of Artificial Intelligence concerned with allowing autonomous agents to make reasonable decisions in complex environments. This work investigates
the application of deep learning and planning techniques, with the aim of constructing generalized plans capable of solving multiple problem instances. We construct a Deep Neural Network that, given an abstract problem state, predicts both (i) the best action to be taken from that state and (ii) the generalized “role” of the object being manipulated. The neural network was tested on two classical planning domains: the blocks world domain and the logistic domain. Results indicate that neural networks are capable of making such
predictions with high accuracy, indicating a promising new framework for approaching generalized planning problems.
ContributorsNakhleh, Julia Blair (Author) / Srivastava, Siddharth (Thesis director) / Fainekos, Georgios (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133339-Thumbnail Image.png
Description
Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.
ContributorsRawal, Samarth Chetan (Author) / Baral, Chitta (Thesis director) / Anwar, Saadat (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133211-Thumbnail Image.png
Description
This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.
ContributorsMartin, Sarah (Author) / Ben Amor, Hani (Thesis director) / Fainekos, Georgios (Committee member) / Barrett, The Honors College (Contributor)
Created2018-05
147587-Thumbnail Image.png
Description

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz

The purpose of this project is to create a useful tool for musicians that utilizes the harmonic content of their playing to recommend new, relevant chords to play. This is done by training various Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNNs) on the lead sheets of 100 different jazz standards. A total of 200 unique datasets were produced and tested, resulting in the prediction of nearly 51 million chords. A note-prediction accuracy of 82.1% and a chord-prediction accuracy of 34.5% were achieved across all datasets. Methods of data representation that were rooted in valid music theory frameworks were found to increase the efficacy of harmonic prediction by up to 6%. Optimal LSTM input sizes were also determined for each method of data representation.

ContributorsRangaswami, Sriram Madhav (Author) / Lalitha, Sankar (Thesis director) / Jayasuriya, Suren (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147647-Thumbnail Image.png
Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

ContributorsCarreto, Cesar (Author) / Pizziconi, Vincent (Thesis director) / Vernon, Brent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
162408-Thumbnail Image.png
Description

Teaching is a challenging career that carries various challenges, some of which go beyond the educator’s control and influence their ability to teach. Through the Arizona State University (ASU) Barrett's Honors College, seminars and discussions centered in collaboration and learning, resulted in student's introduction to ideas of what it means

Teaching is a challenging career that carries various challenges, some of which go beyond the educator’s control and influence their ability to teach. Through the Arizona State University (ASU) Barrett's Honors College, seminars and discussions centered in collaboration and learning, resulted in student's introduction to ideas of what it means to “truly” teach from both a student and educator perspective. Teaching is more than an exchange of information as it requires a human connection. While most educators agree that connection is vital, there are still challenges in the classroom that generationally impact families. Daoism, an ancient Chinese philosophy, discusses concepts such as mindfulness, leadership, and introspection. Educators can use Daoist philosophy as a tool to reflect on and develop their ability to teach with vulnerability, openness, and interconnectedness. From a philosophical standpoint, Lao Tzu (Daoist leader) explains the importance of shifting perspectives to what the individual can control: themselves. Teachers must create a classroom dynamic that is not only engaging but also provides students a sense of autonomy over their education. Shifting the dynamic from teacher centered to student centered places the education in the students’ hands and alleviates some pressure from the teacher. Embedding Daoist philosophy into the classroom can be seamless as it can already be seen through Social Emotional Learning, Culturally Relevant Curriculum, and Deep Learning.

ContributorsGuerra, Alyssa (Author) / Ramsey, Ramsey Eric (Thesis director) / Trombley, Nicole (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05