Matching Items (75)

YouTube Video Bot Detection – A Deep Learning-Based Framework

Description

YouTube video bots have been constantly generating bot videos and posting them on the YouTube platform. While these bot-generated videos negatively influence the YouTube audience, they cost YouTube extra resources

YouTube video bots have been constantly generating bot videos and posting them on the YouTube platform. While these bot-generated videos negatively influence the YouTube audience, they cost YouTube extra resources to host. The goal for this project is to build a classifier that identifies bot-generated channels based on a deep learning-based framework. We designed the framework to take text, audio, and video features into account. For the purpose of this thesis project, we will be focusing on text classification work.

Contributors

Agent

Created

Date Created
  • 2019-05

131274-Thumbnail Image.png

Improving upon the State-of-the-Art in Multimodal Emotional Recognition in Dialogue

Description

Emotion recognition in conversation has applications within numerous domains such as affective computing and medicine. Recent methods for emotion recognition jointly utilize conversational data over several modalities including audio, video,

Emotion recognition in conversation has applications within numerous domains such as affective computing and medicine. Recent methods for emotion recognition jointly utilize conversational data over several modalities including audio, video, and text. However, state-of-the-art frameworks for this task do not focus on the feature extraction and feature fusion steps of this process. This thesis aims to improve the state-of-the-art method by incorporating two components to better accomplish these steps. By doing so, we are able to produce improved representations for the text modality and better model the relationships between all modalities. This paper proposes two methods which focus on these concepts and provide improved accuracy over the state-of-the-art framework for multimodal emotion recognition in dialogue.

Contributors

Agent

Created

Date Created
  • 2020-05

130975-Thumbnail Image.png

Prediction of Binding Affinity of T cell Receptor and Antigens using Deep Neural Networks

Description

Immunotherapy is an effective treatment for cancer which enables the patient's immune system to recognize tumor cells as pathogens. In order to design an individualized treatment, the t cell receptors

Immunotherapy is an effective treatment for cancer which enables the patient's immune system to recognize tumor cells as pathogens. In order to design an individualized treatment, the t cell receptors (TCR) which bind to a tumor's unique antigens need to be determined. We created a convolutional neural network to predict the binding affinity between a given TCR and antigen to enable this.

Contributors

Agent

Created

Date Created
  • 2020-12

131212-Thumbnail Image.png

Facial Expression Recognition Using Machine Learning

Description

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have

In recent years, the development of new Machine Learning models has allowed for new technological advancements to be introduced for practical use across the world. Multiple studies and experiments have been conducted to create new variations of Machine Learning models with different algorithms to determine if potential systems would prove to be successful. Even today, there are still many research initiatives that are continuing to develop new models in the hopes to discover potential solutions for problems such as autonomous driving or determining the emotional value from a single sentence. One of the current popular research topics for Machine Learning is the development of Facial Expression Recognition systems. These Machine Learning models focus on classifying images of human faces that are expressing different emotions through facial expressions. In order to develop effective models to perform Facial Expression Recognition, researchers have gone on to utilize Deep Learning models, which are a more advanced implementation of Machine Learning models, known as Neural Networks. More specifically, the use of Convolutional Neural Networks has proven to be the most effective models for achieving highly accurate results at classifying images of various facial expressions. Convolutional Neural Networks are Deep Learning models that are capable of processing visual data, such as images and videos, and can be used to identify various facial expressions. The purpose of this project, I focused on learning about the important concepts of Machine Learning, Deep Learning, and Convolutional Neural Networks to implement a Convolutional Neural Network that was previously developed by a recommended research paper.

Contributors

Created

Date Created
  • 2020-05

131135-Thumbnail Image.png

Convolutional Neural Network for Pose Initialization with Uncertainty Estimation

Description

Accurate pose initialization and pose estimation are crucial requirements in on-orbit space assembly and various other autonomous on-orbit tasks. However, pose initialization and pose estimation are much more difficult to

Accurate pose initialization and pose estimation are crucial requirements in on-orbit space assembly and various other autonomous on-orbit tasks. However, pose initialization and pose estimation are much more difficult to do accurately and consistently in space. This is primarily due to not only the variable lighting conditions present in space, but also the power requirements mandated by space-flyable hardware. This thesis investigates leveraging a deep learning approach for monocular one-shot pose initialization and pose estimation. A convolutional neural network was used to estimate the 6D pose of an assembly truss object. This network was trained by utilizing synthetic imagery generated from a simulation testbed. Furthermore, techniques to quantify model uncertainty of the deep learning model were investigated and applied in the task of in-space pose estimation and pose initialization. The feasibility of this approach on low-power computational platforms was also tested. The results demonstrate that accurate pose initialization and pose estimation can be conducted using a convolutional neural network. In addition, the results show that the model uncertainty can be obtained from the network. Lastly, the use of deep learning for pose initialization and pose estimation in addition with uncertainty quantification was demonstrated to be feasible on low-power compute platforms.

Contributors

Created

Date Created
  • 2020-05

133211-Thumbnail Image.png

Beyond Deep Learning: Synthesizing Navigation Programs using Neural Turing Machines

Description

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a

This thesis aims to improve neural control policies for self-driving cars. State-of-the-art navigation software for self-driving cars is based on deep neural networks, where the network is trained on a dataset of past driving experience in various situations. With previous methods, the car can only make decisions based on short-term memory. To address this problem, we proposed that using a Neural Turing Machine (NTM) framework adds long-term memory to the system. We evaluated this approach by using it to master a palindrome task. The network was able to infer how to create a palindrome with 100% accuracy. Since the NTM structure proves useful, we aim to use it in the given scenarios to improve the navigation safety and accuracy of a simulated autonomous car.

Contributors

Agent

Created

Date Created
  • 2018-05

133339-Thumbnail Image.png

Prescription Information Extraction from Electronic Health Records using BiLSTM-CRF and Word Embeddings

Description

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able

Medical records are increasingly being recorded in the form of electronic health records (EHRs), with a significant amount of patient data recorded as unstructured natural language text. Consequently, being able to extract and utilize clinical data present within these records is an important step in furthering clinical care. One important aspect within these records is the presence of prescription information. Existing techniques for extracting prescription information — which includes medication names, dosages, frequencies, reasons for taking, and mode of administration — from unstructured text have focused on the application of rule- and classifier-based methods. While state-of-the-art systems can be effective in extracting many types of information, they require significant effort to develop hand-crafted rules and conduct effective feature engineering. This paper presents the use of a bidirectional LSTM with CRF tagging model initialized with precomputed word embeddings for extracting prescription information from sentences without requiring significant feature engineering. The experimental results, run on the i2b2 2009 dataset, achieve an F1 macro measure of 0.8562, and scores above 0.9449 on four of the six categories, indicating significant potential for this model.

Contributors

Agent

Created

Date Created
  • 2018-05

131461-Thumbnail Image.png

Music Mood Classification

Description

Spotify, one of the most popular music streaming services, has many
algorithms for recommending new music to users. However, at the
core of their recommendations is the collaborative filtering algorithm,

Spotify, one of the most popular music streaming services, has many
algorithms for recommending new music to users. However, at the
core of their recommendations is the collaborative filtering algorithm,
which recommends music based on what other people with similar
tastes have listened to [1]. While this can produce highly relevant
content recommendations, it tends to promote only popular content
[2]. The popularity bias inherent in collaborative-filtering based
systems can overlook music that fits a user’s taste, simply because
nobody else is listening to it. One possible solution to this problem is
to recommend music based on features of the music itself, and
recommend songs which have similar features. Here, a method for
extracting high-level features representing the mood of a song is
presented, with the aim of tailoring music recommendations to an
individual's mood, and providing music recommendations with
diversity in popularity.

Contributors

Agent

Created

Date Created
  • 2020-05

131482-Thumbnail Image.png

Improving Peptide Identification in Shotgun Proteomics Using Deep Neural Networks

Description

In shotgun proteomics, liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) is used to identify and quantify peptides and proteins. LC-MS/MS produces mass spectra, which must be searched by one

In shotgun proteomics, liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) is used to identify and quantify peptides and proteins. LC-MS/MS produces mass spectra, which must be searched by one or more engines, which employ
algorithms to match spectra to theoretical spectra derived from a reference database.
These engines identify and characterize proteins and their component peptides. By
training a convolutional neural network on a dataset of over 6 million MS/MS spectra
derived from human proteins, we aim to create a tool that can quickly and effectively
identify spectra as peptides prior to database searching. This can significantly reduce search space and thus run time for database searches, thereby accelerating LCMS/MS-based proteomics data acquisition. Additionally, by training neural networks
on labels derived from the search results of three different database search engines, we
aim to examine and compare which features are best identified by individual search
engines, a neural network, or a combination of these.

Contributors

Agent

Created

Date Created
  • 2020-05

147647-Thumbnail Image.png

Deep Learning Application to Improve Quality of Life in Diabetes

Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

Contributors

Agent

Created

Date Created
  • 2021-05