Matching Items (35)
Filtering by

Clear all filters

157457-Thumbnail Image.png
Description
The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by

The construction industry is very mundane and tiring for workers without the assistance of machines. This challenge has changed the trend of construction industry tremendously by motivating the development of robots that can replace human workers. This thesis presents a computed torque controller that is designed to produce movements by a small-scale, 5 degree-of-freedom (DOF) robotic arm that are useful for construction operations, specifically bricklaying. A software framework for the robotic arm with motion and path planning features and different control capabilities has also been developed using the Robot Operating System (ROS).

First, a literature review of bricklaying construction activity and existing robots’ performance is discussed. After describing an overview of the required robot structure, a mathematical model is presented for the 5-DOF robotic arm. A model-based computed torque controller is designed for the nonlinear dynamic robotic arm, taking into consideration the dynamic and kinematic properties of the arm. For sustainable growth of this technology so that it is affordable to the masses, it is important that the energy consumption by the robot is optimized. In this thesis, the trajectory of the robotic arm is optimized using sequential quadratic programming. The results of the energy optimization procedure are also analyzed for different possible trajectories.

A construction testbed setup is simulated in the ROS platform to validate the designed controllers and optimized robot trajectories on different experimental scenarios. A commercially available 5-DOF robotic arm is modeled in the ROS simulators Gazebo and Rviz. The path and motion planning is performed using the Moveit-ROS interface and also implemented on a physical small-scale robotic arm. A Matlab-ROS framework for execution of different controllers on the physical robot is described. Finally, the results of the controller simulation and experiments are discussed in detail.
ContributorsGandhi, Sushrut (Author) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2019
156724-Thumbnail Image.png
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared

The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.

A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and

safe.

A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.

A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.

The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.

An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
ContributorsJhawar, Vaibhav (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
156950-Thumbnail Image.png
Description
Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily

Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity.

This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega ($A \omega$) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the $A \omega$ algorithm is based on thigh angle measurements from a single IMU.

This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator ($A\omega AO$) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The $A \omega$ algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The $A\omega AO$ method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.
ContributorsChinimilli, Prudhvi Tej (Author) / Redkar, Sangram (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
154700-Thumbnail Image.png
Description
It is well known that the geckos can cling to almost any surface using highly dense micro
ano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work

It is well known that the geckos can cling to almost any surface using highly dense micro
ano fibrils found on the feet that rely on Van Der Waals forces to adhere. A few experimental and theoretical approaches have been taken to understand the adhesion mechanism of gecko feet. This work explains the building procedure of custom experimental setup to test the adhesion force over a temperature range and extends its application in space environment, potentially unsafe working condition.



This study demonstrates that these adhesive capable of switching adhesive properties not only at room environment but also over a temperature range of -160 degC to 120 degC in vacuum conditions. These conditions are similar to the condition experienced by a satellite in a space orbiting around the earth. Also, this study demonstrated various detachment and specimen patch preparation methods. The custom-made experimental setup for adhesion test can measure adhesion force in temperature and pressure controlled environment over specimen size of 1 sq. inch. A cryogenic cooling system with liquid nitrogen is used to achieve -160 degC and an electric resistive heating system are used to achieve 120 degC in controlled volume. Thermal electrodes, infrared thermopile detectors are used to record temperature at sample and pressure indicator to record vacuum condition in controlled volume. Reversibility of the switching behaviour of the specimen in controlled environment confirms its application in space and very high or very low-temperature conditions.

The experimental setup was developed using SolidWorks as a design tool, Ansys as simulation tool and the data acquisition utilizes LabVIEW available in the market today.
ContributorsMate, Sunil (Author) / Marvi, Hamidreza (Thesis advisor) / Rykaczewski, Konrad (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2016
154718-Thumbnail Image.png
Description
Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies of ankle angle perturbation over wider ranges of grade orientations in static conditions; however, these studies do not account for effects during the gait cycle. Furthermore, contemporary studies on this topic neglect critical sources of unnatural stimulus in the design of investigative technology. It is hypothesized that the investigation of ankle angle perturbations in the frontal plane, particularly in the context of inter-leg coordination mechanisms, results in a more complete characterization of the effects of surface grade on human gait mechanisms. This greater understanding could potentially lead to significant applications in gait rehabilitation, especially for individuals who suffer from impairment as a result of stroke. A wearable pneumatic device was designed to impose inversion and eversion perturbations on the ankle through simulated surface grade changes. This prototype device was fabricated, characterized, and tested in order to assess its effectiveness. After testing and characterizing this device, it was used in a series of experiments on human subjects while data was gathered on muscular activation and gait kinematics. The results of the characterization show success in imposing inversion and eversion angle perturbations of approximately 9° with a response time of 0.5 s. Preliminary experiments focusing on inter-leg coordination with healthy human subjects show that one-sided inversion and eversion perturbations have virtually no effect on gait kinematics. However, changes in muscular activation from one-sided perturbations show statistical significance in key lower limb muscles. Thus, the prototype device demonstrates novelty in the context of human gait research for potential applications in rehabilitation.
ContributorsBarkan, Andrew (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2016
135471-Thumbnail Image.png
Description
Current robotic systems are limited in their abilities to efficiently traverse granular environments due to an underdeveloped understanding of the physics governing the interactions between solids and deformable substrates. As there are many animal species biologically designed for navigation of specific terrains, it is useful to study their mechanical ground

Current robotic systems are limited in their abilities to efficiently traverse granular environments due to an underdeveloped understanding of the physics governing the interactions between solids and deformable substrates. As there are many animal species biologically designed for navigation of specific terrains, it is useful to study their mechanical ground interactions, and the kinematics of their movement. To achieve this, an automated, fluidized bed was designed to simulate various terrains under different conditions for animal testing. This document examines the design process of this test setup, with a focus on the controls. Control programs will be tested with hardware to ensure full functionality of the design. Knowledge gained from these studies can be used to optimize morphologies and gait parameters of robots. Ultimately, a robot can be developed that is capable of adapting itself for efficient locomotion on any terrain. These systems will be invaluable for applications such as planet exploration and rescue operations.
ContributorsHarvey, Carolyn Jean (Author) / Marvi, Hamidreza (Thesis director) / Emady, Heather (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147715-Thumbnail Image.png
Description

A description of the robotics principles, actuators, materials, and programming used to test the durability of dendritic identifiers to be used in the produce supply chain. This includes the application of linear and rotational servo motors, PWM control of a DC motor, and hall effect sensors to create an encoder.

ContributorsRobertson, Stephen (Author) / Kozicki, Michael (Thesis director) / Manfredo, Mark (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168636-Thumbnail Image.png
Description
The ability for aerial manipulators to stay aloft while interacting with dynamic environments is critical for successfully in situ data acquisition methods in arboreal environments. One widely used platform utilizes a six degree of freedom manipulator attached to quadcoper or octocopter, to sample a tree leaf by maintaining the system

The ability for aerial manipulators to stay aloft while interacting with dynamic environments is critical for successfully in situ data acquisition methods in arboreal environments. One widely used platform utilizes a six degree of freedom manipulator attached to quadcoper or octocopter, to sample a tree leaf by maintaining the system in a hover while the arm pulls the leaf for a sample. Other system are comprised of simpler quadcopter with a fixed mechanical device to physically cut the leaf while the system is manually piloted. Neither of these common methods account or compensate for the variation of inherent dynamics occurring in the arboreal-aerial manipulator interaction effects. This research proposes force and velocity feedback methods to control an aerial manipulation platform while allowing waypoint navigation within the work space to take place. Using these methods requires minimal knowledge of the system and the dynamic parameters. This thesis outlines the Robot Operating System (ROS) based Open Autonomous Air Vehicle (OpenUAV) simulations performed on the purposed three degree of freedom redundant aerial manipulation platform.
ContributorsCohen, Daniel (Author) / Das, Jnaneshwar (Thesis advisor) / Marvi, Hamidreza (Committee member) / Saldaña, David (Committee member) / Arizona State University (Publisher)
Created2022